Assignments 4 Solutions

1. Consider using CBC mode of encryption in the following way: the IV is treated as a key, and is assumed to be known to both Alice and Bob, but no actual encryption function is used. (That is, $E_K(x) = x$ for all K and all x.) We will investigate whether this yields any security.

 a. Show a known plaintext total break attack (i.e. one that yields IV) against this kind of cryptosystem.

 Sol:
 Known plaintext attack:

 Assuming that attackers know the block size.
 each $m_i = c_{i-1} \oplus c_i$, for $i > 1$
 This means that all m_i's except m_1 are not hidden by this scheme.
 The secret key only hides m_1.
 With a little bit of luck, knowing the plaintext m_1 and the corresponding ciphertext c_1 suffices to find the key.

 b. Discuss ciphertext-only attacks, both in the case that only one block is given and in the case that ℓ blocks are given for some $\ell > 1$

 Sol:
 Ciphertext-only attack:
 Attacker just gets the ciphertext.

 If the attacker knows only one block of ciphertext c_1:
 The attacker cannot derive any information about m_1. Nor can he derive any information about the key. All other message blocks m_i can be derived with the information of two blocks of ciphertexts c_{i-1} and c_i:
 $m_i = c_{i-1} \oplus c_i$, for $i > 1$

 If the attacker knows consecutive ℓ blocks:
 The attacker can know $\ell-1$ blocks of plaintext $\{m_2, m_3, ..., m_\ell\}$
2. (Trappe page 125, 4.8.4) For a string of bits S, let \overline{S} denote the complementary string obtained by changing all the 1’s to 0’s and all the 0’s to 1’s (equivalently, $S = \overline{S} \oplus 11111\ldots111$). Show that if the DES key k encrypts P to C, then \overline{k} encrypts \overline{P} to \overline{C}.

Sol:

From the simple logic of the expander function $E(\cdot)$, it can be noted that

$$E(A) = \overline{E(A)}$$

The following figure shows that $f(R_i, k_{i+1})$ equals $f(\overline{R_i}, \overline{k_{i+1}})$

![Diagram showing $f(R_i, k_{i+1})$ equals $f(\overline{R_i}, \overline{k_{i+1}})$]

Note that

$$E(\overline{R_i}) \oplus \overline{k_{i+1}} = E(R_i) \oplus k_{i+1}$$

$$= 111\ldots111 \oplus E(R_i) \oplus 111\ldots111 \oplus k_{i+1}$$

$$= E(R_i) \oplus k_{i+1}$$

In each DES round:

$$\begin{align*}
L_{i+1} &= R_i \\
R_{i+1} &= L_i \oplus f(R_i, k_{i+1})
\end{align*}$$

If the input is complemented, i.e. $(\overline{L_i}, \overline{R_i})$ and the key is also complemented, then

$$\begin{align*}
L_{i+1} &= \overline{R_i} = R_i \oplus 11\ldots111 \\
R_{i+1} &= \overline{L_i} \oplus f(\overline{R_i}, \overline{k_{i+1}}) = L_i \oplus 11\ldots111 \oplus f(R_i, k_{i+1})
\end{align*}$$

So \overline{k} encrypts \overline{P} to \overline{C}

3. (Stinson page 113 3.4) Before the AES was developed, it was suggested to increase the security of DES by using the product cipher $\text{DES} \times \text{DES}$. This product cipher uses two 56-bit keys. Consider known-plaintext attacks on product ciphers. In general, suppose that we take the product of any cipher $S = (P, P, K, E, D)$ with itself. Further, suppose that $K = \{0,1\}^n$ and $P = \{0,1\}^m$.
Now assume we have several plaintext-ciphertext pairs for the product cipher S^2, say $(x_1, y_1), \ldots, (x_l, y_l)$, all of which are obtained using the same unknown key, (K_1, K_2).

a. Prove that $e_{K_1}(x_i) = d_{K_2}(y_i)$ for all i, $1 \leq i \leq l$. Give a heuristic argument that the expected number of keys (K_1, K_2) such that $e_{K_1}(x_i) = d_{K_2}(y_i)$ for all i, $1 \leq i \leq l$, is roughly 2^{2n-m}.

Sol:

for all i, $1 \leq i \leq l$, $y_i = e_{K_2}(e_{K_1}(x_i))$

apply the decryption function $d_{K_2}(\cdot)$ on both sides of the above equation, we get $d_{K_2}(y_i) = d_{K_2}(e_{K_2}(e_{K_1}(x_i))) = e_{K_1}(x_i)$

Assume $n \gg m$. For a given key K_2, if $e_{K_1}(\cdot)$ can map x_i to the corresponding $d_{K_2}(y_i)$ for all i, $1 \leq i \leq l$, at the same time, the key pair (K_1, K_2) is the key of our choice. Assume that $e_{K_1}(\cdot)$ maps in a random manner. For one pair of x_i and $d_{K_2}(y_i)$, there could be roughly $2^n/2^m K_1$ keys that provide the mapping.

For l pairs of x_i and $d_{K_2}(y_i)$, there are roughly $2^n/2^m l K_1$ keys that provide the mapping. Therefore, the rough number of key pairs that satisfy the above l mappings is $2^n \cdot (2^n/2^m) = 2^{2n-m}$

There are 2^n possible K_2 keys.

b. Assume that $l \geq 2n/m$. A time-memory trade-off can be used to compute the unknown key (K_1, K_2). We compute two lists, each containing 2^n items, where each item contains an l-tuple of elements of P as well as an element of K. If the two lists are sorted, then a common l-tuple can be identified by means of a linear search through each of the two lists. Show that this algorithm requires $2^{n+1} \ell + 2^{n+1}$ bits of memory and $\ell 2^{n+1}$ encryptions and/or decryptions.

Sol:

The two lists are shown in the following figure. You can sort the lists according to the ℓm bits and match the ℓm bits of each list to find the key pairs (K_1, K_2) that have matched $\{e_{K_1}(x_1), e_{K_1}(x_2), \ldots, e_{K_1}(x_l)\}$ and $\{d_{K_2}(y_1), \ldots, d_{K_2}(y_l)\}$.
\(d_{K_2}(y_2), \ldots, d_{K_2}(y_l) \} \).

This algorithm requires \(2^n \cdot (\ell m + n) \cdot 2 \) bits of memory. To prepare the two lists, \(2^n \cdot \ell \) encryptions and \(2^n \cdot \ell \) decryptions are required.

c. Show that the memory requirement of the attack can be reduced by a factor of \(2^t \) if the total number of encryptions is increased by a factor of \(2^t \). (Hint: Break the problem up into \(2^{2t} \) subcases, each of which is specified by simultaneously fixing \(t \) bits of \(K_1 \) and \(t \) bits of \(K_2 \))

Sol:

Break the problem up into \(2^{2t} \) subcases, each of which is specified by simultaneously fixing \(t \) bits of \(K_1 \) and \(t \) bits of \(K_2 \). In this case, only \(2^{n-t} \) items are required in each list. However, each \(K_1 \) list is required to compare with \(2^t \) dynamically calculated \(K_2 \) lists. This algorithm requires \(2^{n-t} \cdot (\ell m + n) \cdot 2 \) bits of memory. To prepare the \(2^t \) \(K_1 \) lists along the computation, \(2^1 \cdot 2^{n-t} \cdot \ell \) (\(= 2^n \cdot \ell \)) encryptions are required. To prepare the \(2^1 \cdot 2^t \) \(K_2 \) lists along the computation, \(2^1 \cdot 2^t \cdot 2^{n-t} \cdot \ell \) (\(= 2^{n+t} \cdot \ell \)) decryptions are required, which is \(2^t \) time more than the original algorithm.