1. (Trappe, page 159: 1) The ciphertext 5859 was obtained from the RSA algorithm using \(n = 11413 \) and \(e = 7467 \). Using the factorization \(11413 = 101 \cdot 113 \), find the plaintext

Sol:

\[
\phi(n) = (p-1) \cdot (q-1) = 100 \cdot 112 = 11200
\]

\[
d \equiv e^{-1} \equiv 3 \pmod{11200} \text{ (using extended Euclidean algorithm)}
\]

\[
m \equiv e^d \equiv 5859^3 \equiv 1415 \pmod{11413}
\]

verification: \(c \equiv 1415^{7467} \equiv 5859 \pmod{11413} \)

2. (Trappe, page 159: 4) Naïve Nelson uses RSA to receive a single ciphertext \(c \), corresponding to the message \(m \). His public modulus is \(n \) and his public encryption exponent is \(e \). Since he feels guilty that his system was used only once, he agrees to decrypt any ciphertext that someone sends him, as long as it is not \(c \), and return the answer to that person. Evil Eve sends him the ciphertext \(2^e c \pmod{n} \). Show how this allows Eve to find \(m \).

Sol:

Nelson checks that \(2^e c \) is not \(c \), then decrypts it and gets

\[
(2^e c)^d \equiv 2c \equiv 2m \pmod{n}
\]

Eve divides this by 2 and obtains the original message \(m \).

3. (Trappe, page 159: 5) In order to increase security, Bob chooses \(n \) and two encryption exponents \(e_1, e_2 \). He asks Alice to encrypt her message \(m \) to him by first computing \(c_1 \equiv m^{e_1} \pmod{n} \), then encrypting \(c_1 \) to get \(c_2 \equiv c_1^{e_2} \pmod{n} \). Alice then sends \(c_2 \) to Bob. Does this double encryption increase security over single encryption? Why or why not?

Sol:

Alice encrypts her message \(m \) as \(c_2 \equiv c_1^{e_2} \equiv m^{e_1 e_2} \pmod{n} \)

To decrypt this message, Bob calculates \((c_2^{d_2})^{d_1} \pmod{n} \), where \(e_1 \cdot d_1 \equiv 1 \pmod{\phi(n)} \) and \(e_2 \cdot d_2 \equiv 1 \pmod{\phi(n)} \).

However, the above procedure is equivalent to the following

Alice encrypts her message \(m \) as \(c_2 \equiv m^{e_3} \pmod{n} \) and

Bob decrypts the ciphertext as \(m \equiv c_2^{d_3} \pmod{n} \) where

\(e_1 \cdot e_2 \equiv e_3 \pmod{\phi(n)} \) and \(d_1 \cdot d_2 \equiv d_3 \pmod{\phi(n)} \)

(which naturally leads to \(e_3 \cdot d_3 \equiv 1 \pmod{\phi(n)} \) and \(c_2^{d_3} \equiv (m^{e_3})^{d_3} \equiv m \pmod{n} \))
Therefore, this scheme is equivalent to a simple RSA scheme with a different key pairs \((n, e_3), (n, d_3)\). The security is not enhanced.

4. (Trappe, page 159: 6) Let \(p\) and \(q\) be distinct odd primes, and let \(n = p \cdot q\).
Suppose that the integer \(x\) satisfies \(\gcd(x, p \cdot q) = 1\).

(a) Show that \(x^{\phi(n)/2} \equiv 1 \pmod{p}\) and \(x^{\phi(n)/2} \equiv 1 \pmod{q}\).

(b) Use (a) to show that \(x^{\phi(n)/2} \equiv 1 \pmod{n}\).

(c) Use (b) to show that if \(e \cdot d \equiv 1 \pmod{\phi(n)/2}\) then \(x^{e \cdot d} \equiv x \pmod{n}\) (This shows that we could work with \(\phi(n)/2\) instead of \(\phi(n)\) in RSA.)

Sol:

(a)

\[
\phi(n)/2 = (p-1) \cdot (q-1)/2 \\
2 \mid (q-1) \Rightarrow (p-1) \mid \phi(n)/2 \Rightarrow \phi(n)/2 = k \cdot (p-1) \\
\text{therefore, } x^{\phi(n)/2} = (x^k)^{p-1} \equiv 1 \pmod{p} \text{ from Fermat theorem} \\
\text{this is also true for } x^{\phi(n)/2} \equiv 1 \pmod{q}
\]

(b) using CRT,

\[x^{\phi(n)/2} \equiv 1 \pmod{p} \text{ and } x^{\phi(n)/2} \equiv 1 \pmod{q} \text{ implies } x^{\phi(n)/2} \equiv 1 \pmod{n} \]

Actually, this can also be derived from Carmichael theorem

\[x^{\lambda(n)} \equiv 1 \pmod{n} \text{ where } \lambda(n) = \text{lcm}(p-1, q-1)\]

since

\[\phi(n) = (p-1) \cdot (q-1) = \gcd(p-1, q-1) \cdot \text{lcm}(p-1, q-1) \text{ and} \]

\[2 \mid \gcd(p-1, q-1) \Rightarrow \text{lcm}(p-1, q-1) \mid \phi(n)/2 \]

i.e.

\[\text{lcm}(p-1, q-1) \mid \phi(n)/2\]

(c) if \(e \cdot d \equiv 1 \pmod{\phi(n)/2}\) then

\[e \cdot d = 1 + k \cdot \phi(n)/2 \Rightarrow x^{e \cdot d} = x^{1 + k \cdot \phi(n)/2} \equiv x \pmod{n}\]

from the result of (b)

5. (Trappe, page 160: 12) Show that if \(x^2 \equiv y^2 \pmod{n}\) and \(x T \pm y \pmod{n}\), then \(\gcd(x+y, n)\) is a nontrivial factor of \(n\).

Sol:

We prove this in a way exactly the same as we prove the basic principle of factoring.
let \(d = \gcd(x+y, n) \)

There are three cases to be discussed:
Case 1 \(d = n \): if \(d = n \), then \(x+y \equiv 0 \pmod{n} \), contradiction.
Case 2 \(d = 1 \):
\[
x^2 \equiv y^2 \pmod{n} \Rightarrow x^2 - y^2 = (x-y)(x+y) = k \cdot n
\]
\(\Rightarrow x-y \equiv 0 \pmod{n} \), contradiction

6. (Trappe, page 162: 4) Factor 618240007109027021 by the p-1 method

Sol:

Because this number is bigger than \(2^{32} \), MATLAB cannot process this number directly. We are going to use MAPLE kernel in MATLAB for solving this factoring problem with p-1 factoring method.

In a p-1 factoring method, we hope that there is discrepancy in the factors of p-1 and q-1.

If we can find a number, say \(B! \), such that \(p-1 \mid B! \) but \(q-1 \nmid B! \), then \(a^{B!} \equiv 1 \pmod{p} \) but \(a^{B!} \equiv 1 \pmod{q} \), i.e. \(a^{B!} - 1 = k \cdot p \neq k' \cdot q \). Therefore, \(a^{B!-1} \pmod{n} \) is not 0 and \(\gcd(a^{B!-1} \pmod{n}, n) = p \) is a nontrivial factor of n.

```maple
>> maple('n:=618240007109027021; B:=5; p:=gcd((5&^factorial(B)) mod n -1, n)')
an=
n := 618240007109027021  B := 5  p := 1
>> maple('n:=618240007109027021; B:=10; p:=gcd((5&^factorial(B)) mod n -1, n)')
an=
n := 618240007109027021  B := 10  p := 1
>> maple('n:=618240007109027021; B:=15; p:=gcd((5&^factorial(B)) mod n -1, n)')
an=
n := 618240007109027021  B := 15  p := 1
>> maple('n:=618240007109027021; B:=20; p:=gcd((5&^factorial(B)) mod n -1, n)')
an=
n := 618240007109027021  B := 20  p := 1
>> maple('n:=618240007109027021; B:=25; p:=gcd((5&^factorial(B)) mod n -1, n)')
an=
n := 618240007109027021  B := 25  p := 250387201
>> maple('n:=618240007109027021; B:=30; p:=gcd((5&^factorial(B)) mod n -1, n)')
an=
n := 618240007109027021  B := 30  p := 250387201
```

As a comparison, we factors 618240007109027021 directly with ifactor():

```maple
> maple('ifactor(618240007109027021)')
an = ``(2469135821)*``(250387201)
```

If you have the MAPLE software installed, you can write a for loop to perform the above search procedure, the codes looks like:

```
n := 618240007109027021;
B := 1;
```
7. (Trappe, page 162: 6) Let $n = 537069139875071$. Suppose you know that

$$85975324443166^2 \equiv 462436106261^2 \pmod{n}$$

Factor n.

Sol:

Clearly $85975324443166 \pm 462436106261 \pmod{n}$ because

$$-462436106261 \equiv 536606703768810 \pmod{n}$$

$\text{gcd}(85975324443166-462436106261, 537069139875071) = 9876469$

$\text{gcd}(85975324443166+462436106261, 537069139875071) = 54378659$

while $9876469 \times 54378659 = 537069139875071$

the above can be easily done through MAPLE

```maple
>> maple('n:= 537069139875071; b:=n - 462436106261:')
ans =  n := 537069139875071  b := 536606703768810
>> maple('c=gcd(537069139875071, 85975324443166-462436106261)')
ans =  c = 9876469
>> maple('c=gcd(537069139875071, 85975324443166+462436106261)')
ans =  c = 54378659
>> maple('c=9876469*54378659')
ans =  c = 537069139875071
```