
Why VC++ instead
of Dev C++?

2

I love UNIX! I am proficient in UNIX!
I like public domain open source software.
I love GPL.
I was more confident in GCC than in

Microsoft C.
But! The software business has changed so

much since year 1990. One man heroic
software is no more astonishing and reliable.
Instead, software engineers together

contribute to the functionalities of a package.

3

Dev-C++ 5.0 beta 9.2 (4.9.9.2) 2005-02-21
is a Win32 porting (Mingw) of GNU GCC
3.4.2
http://www.bloodshed.net/devcpp.html
http://www.bloodshed.net/dev/devcpp.html

4

Problem #1
#include <stdio.h>
int main (void)
{

char *filename;

printf ("Please input the filename of the data. (ex: "
" pixelsImage1.dat)\n\n >> ");

scanf ("%s", filename);
return 0;

}

This does not cause any runtime error!!
Is it only too lucky for this or OK to use every unallocated
memory?

5

Problem #2
int fun(int size)
{

int a[size];
…

}

int s = -10;
fun(s);

…
Could you imagine that this is not a compile time error and
even not a runtime error in some context?
I verified that GCC 3.4 accepts this but VC series do not.
Poor portability, not supported in ANSI C++

Since a is allocated on the system
stack, this can be implemented.
However, at least some dynamic
check of array size is necessary.
malloc() has return value but VLA
does not.

Variable Length Array (VLA) of ISO C99
https://gcc.gnu.org/onlinedocs/gcc/Variable-Length.html

6

Problem #3
#include <iostream>
using namespace std;
int main()
{

char hexnum[8];
char temp[8];
cin >> hexnum;
temp = hexnum;
cout << temp;
return 0;

}

VC error C2106: '=' : left
operand must be l-value

Can you imagine that this is allowed in Dev C++ 4.9.9.2?

g++ 4.8.3
error: invalid array assignment

But no error in g++ 3.4.2

Problem #4
Tolerate “missing return statements”

7

#include <stdio.h>
int square(int x) {

int z = x * x;
int y;
y = 10*x+1;

}
int main() {

printf("%d\n", square(10));
}

2015/12/28
devcpp 5.11 MingW(gcc 4.8.1, g++ 4.8.1)

This is really a nightmare to debug a 300-line
program from a novice programmer.

This is still a major problem for a real software
package by an experienced programmer.

Problem #5
file name with spaces

8

9

Disaster!!
10

Problem #6
In a project xxx.dev

yyy.c is compiled by g++ if you select
“C++ project” as you create your project

11 12

Summary
 I am not demonstrating that Dev C++ is of no use.
 In fact, these problems do not affect my work at all.

 I seldom commit the first or the third error, at least not
when I am sober.

 I never use the second extended grammar of g++.
 Thus, what I am saying is that Dev C++ is OK for well-

trained programmers but clearly not for novice programmers.
 C treats you like a “consenting adult” especially the public

domain Dev-C++ and GNU C/C++
 Not detecting these problems should be a very serious crime

and help cultivating bad habits for a beginning programmer
or just destroying his likely shining career.

 Saving money should not be blamed and given in return an
inferior compiler.

13

Other GCC Extensions
 http://tigcc.ticalc.org/doc/gnuexts.html
 Some features that are in ISO C99 but not C89 are also, as

extensions, accepted by GCC in C89 mode.
 Statements and Declarations in Expressions
 Locally Declared Labels
 Labels as Values
 Nested Functions
 Constructing Function Calls
 Referring to a Type with 'typeof'
 Generalized Lvalues
 Conditionals with Omitted

Operands
 Double-Word Integers
 Complex Numbers
 Hex Floats

 Structures With No Members
 Arrays of Length Zero
 Arrays of Variable Length
 Macros with a Variable

Number of Arguments
 Non-Lvalue Arrays May Have

Subscripts
 Arithmetic on void and

Function Pointers
 Non-Constant Initializers
 Compound Literals (Cast

Constructors)
 Designated Initializers 14

 Cast to a Union Type
 Case Ranges
 Specifying Attributes of

Functions
 Specifying Attributes of

Variables
 Specifying Attributes of Types
 Attribute Syntax
 Prototypes and Old-Style

Function Definitions
 C++ Style Comments
 Dollar Signs in Identifier

Names
 Escape Character in Constants
 Inquiring on Alignment of

Types or Variables
 Inline Functions
 Inline Assembler
 Controlling Names Used in

Assembler Code
 Variables in Specified Registers

 Alternate Keywords
 Incomplete 'enum' Types
 Function Names as Strings
 Getting the Return or Frame

Address of a Function
 Other built-in functions provided

by GCC
 Slightly Looser Rules for Escaped

Newlines
 String Literals with Embedded

Newlines
 Mixed Declarations and Code
 Unnamed struct/union Fields

within structs/unions
 Definite Access of Volatile

Objects
 History
 GNU General Public License
 GNU Free Documentation License
 Funding Free Software

15 16

Not really a Problem
#include <iostream>
#include <string>
#include <math.h>
using namespace std;
int main()
{

char id[2];
id[0]='5';
cout << id[0] << endl;
cout << (int)id[0] << endl;
cout << (int)pow(id[0],2) << endl;
cout << (int)pow(id[0],3) << endl;
cout << (int)pow(id[0],4) << endl;
return 0;

}

VC6

5

53

2809

148877

7890481

Dev C++

5

53

2809

148876

7890481

