
1

Dynamic Memory Allocation
with malloc() and free()

Pei-yih Ting

2

malloc() and free()

 Library routines for managing the heap

int *ary;
ptr = (int *) malloc(sizeof(int) * 100);
ary[5] = 3;
free(ary);

 Allocate and free arbitrary-sized chunks
of memory in any order

3

malloc() and free()
 More flexible than automatic variables (stacked)
 More costly in time and space

 malloc() and free() use complicated non-constant-
time algorithms

 Each block generally consumes two additional words
 Pointer to next empty block

 Common source of errors
 Using uninitialized memory
 Using freed memory
 Not allocating enough
 Neglecting to free disused blocks (memory leaks)

 Size of this block

4

malloc() and free()

 Memory usage errors so pervasive, entire
successful company (Pure Software) founded
to sell tool to track them down

 Purify tool inserts code that verifies each
memory access

 Reports accesses of uninitialized memory,
unallocated memory, etc.

 Publicly-available Electric Fence tool does
something similar

5

Dynamic Storage Allocation

 What are malloc() and free() actually doing?
 Pool of memory segments:

free

malloc()

from the
user side

6

Dynamic Storage Allocation

 Rules:
 Each segment contiguous in memory (no holes)
 Segments do not move once allocated

 malloc()
 Find memory area large enough for segment
 Mark that memory as allocated

 free()
 Mark the segment as unallocated

7

Dynamic Storage Allocation

 Three issues:

 How to maintain information about free

memory

 The algorithm for locating a suitable block

 The algorithm for freeing an allocated block

8

Simple Dynamic Storage
Allocation

 Three issues:
 How to maintain information about free

memory
 Linked list

 The algorithm for locating a suitable block
 First-fit

 The algorithm for freeing an allocated block
 Coalesce adjacent free blocks

9

Simple Dynamic Storage
Allocation

Next
Size

Next
SizeSize

Chain of
free
blocks

Allocated block

malloc()

 Previous next
pointer updated

 Newly-allocated
region begins with
a size value

 First large-enough
free block selected

 Free block
divided
into two

10

Simple Dynamic Storage
Allocation

free(a)

Appropriate
position in free list
identified
Newly-freed region
added to adjacent
free regions

11

Dynamic Storage Allocation

 Many, many variants

 Other “fit” algorithms

 Segregation of objects by sizes
 8-byte objects in one region, 16 in another, etc.

 More intelligent list structures

