A Familiar yet Vague Name:
“Abstract Data Type”

C++ Object Oriented Programming
Pei-yih Ting
NTOU CS

Abstract Data Type (cont’d)

< See what people on Internet said
ADT (Abstract data type)
ADT 2
(ADT)

Any better?!

(array)
int array[10];

Abstract Data Type

< Abstract?!
* Disassociated from any specific instance
x Expressing a quality apart from an object ()

* Having only intrinsic form with little attempt at pictorial
representation or narrative content

< Data type?
characteristics of a set of data,
template for instances of data storage
specifies: - format
{ ranges
memory resources

Abstract Data Type (cont’d)

<+ http://en.wikipedia.org/wiki/Abstract_data_type

< In computing, an abstract data type (ADT) is a
specification of a set of data and the set of
operations that can be performed on the data.

< €.g. container, deque, list, map, multimap, multiset,
priority queue, queue, set, stack, string, tree

< Such a data type is abstract in the sense that it is
independent of various concrete implementations.

x Question: Will they still be abstract without the set of
operations (only the set of data)??,

Abstract Data Type (cont’d)
< Are you really satisfying with this definition???
* “Data type” is an easy idea: the attributes

= It looks like that “data type” itself could also be
independent of various implementations.

*Why is the additional “operations” related
to the keyword “abstract”???

Example: Prim’s MST (cont’)

prim(adj, start, parent) { while (ref = null) {
n = adj.last w = ref.ver
fori=1ton if (h.isin(w) &&
key[i] = o< ref.weight < h.keyval(w)) {
key[start] =0 parent[fw] = v
parent[start] = 0 h.decrease(w, ref.weight)
h.init(key, n) 1
fori=1ton{ ref = ref.next
v = h.del() }
ref = adj[v] }

}

h is an abstract data type that supports the following operations

h.init(key, n): initializes h to the values in key

h.del(): deletes the item in h with the smallest weight and returns the vertex
h.isin(w): returns true if vertex w is in h

h.keyval(w): returns the weight corresponding to vertex w

h.decrease(w, new_weight): changes the weight of w to new_weight (smaller)

Example: Prim’s MST

< In JohnsonBaugh’s “Algorithms”
Fowille 4 Steger Minimum Spanning Tree

/
12 5
YA
- » Springfield
/ ™. /
AL

/

/4

Mystic 2

Abstract Painting

< Picasso Miro - Angel

Abstract

<+ Mathematic formula: Central Limit Theorem,
Stirling formula, Fourier Transform, ...

< Physic formula: wave equation, ...

' Quite often is the case that you cannot see what
these formula mean because they are deprived of
from their original application environments.

Data vs. Operation
pure data

[N O O [

<+ Data can be used for any imaginable purpose.
< You want your data storage to be specific. You
name its “operations”
* How do you use this data?
* For what do you use it?

Abstraction

< Abstraction: the process or result of generalization
by reducing the information content of a concept or
an observable phenomenon
* A method to find general form of an idea
* A method to find a unified explanation
* A method to simplify the complex exteriors.
" _

* €X.

Back to ADT

< abstract data type (ADT):
Is a specification of
{ a set of data and
the set of operations performed on the data.

<+ It is independent of various implementations

<+ It provides specific descriptions of the
functionalities of a piece of data in terms of
operations.

01 // cl testfp.c

The C syntax: x.y vs. x.z() T IN 27 intsOdd(int data)

28{
. 04 struct MyStruct Py T ".
2 In C, how do you capture the idea of 2 i i e

31 return 1;

h.key and h.decrease(w, weight) o int (“fp)(int); 32 else

33 return 0O;

| | 2 09
<+ Are these two syntactically correct in C~ 08 int isOddl(int data): 34}

> Yes. 4l

12 void main()

< decrease is called a “function pointer” struct MyStruct obj = {123, isOdd}:

int data;

<+ It is a piece of data (attribute), and at the same time, int (*myfp)(int) = isOdd:
you can invoke a function via this data.
*e.g. void fun(int x) void (*fp)(int); scanf("%d", &data);

printf(*'Please input an integer: '*);

printf(*'%d\n", obj.fp(data));

. printf("*%d\n", (*obj.fp)(data));
: printf('%d\n"', myfp(data));

fp = fun; printf("%d\n", (*myfp)(data));

} (*fp)(S), * Ca”ing fun(5) */ printf("*%d\n", isOdd(data));

i3

{

