
State DiagramState Diagram

C++ Obj t O i t d P iC++ Object Oriented Programming
Pei-yih Ting
NTOU CSNTOU CS

30-1

Contents

 I t d ti t bj t t t Introduction to object states
 Interface vs. States
 Object with States
 Intuitive Implementationp
 Explicit States
 State Diagram State Diagram
 Systematic Implementation of the State Diagram
 Modification of the Design
 Design with the “State” Pattern

30-2

g

Introduction
 State Diagram is used to described the dynamic behavior

f bj tof an object.
 What is the state of an object?

 All objects have internal states.
 The response of an object to a message depends on its state
Ex.
 I can answer the phone, but whether I answer or not depends on I

am busy or not when the phone rings.
 A television set usually has a couple of control buttons, e.g.

l /d h l /d t t H
 A television set usually has a couple of control buttons, e.g.

l /d h l /d t t
 A television set usually has a couple of control buttons, e.g.

l /d h l /d t t Hvolume up/down, channel up/down, setup, power etc. However,
not every button is responding at any moment, e.g. volume
up/down do not function when power is off Most of the buttons

volume up/down, channel up/down, setup, power etc.volume up/down, channel up/down, setup, power etc. However,
not every button is responding at any moment, e.g. volume
up/down do not function when power is off

30-3

up/down do not function when power is off. Most of the buttons
have a different set of functions when entering setup mode.
up/down do not function when power is off.

Introduction (cont’d)()
 A turnstile has two states: locked or unlocked (coin deposited)

Wh i if t bj t f fil i t d ti f When using an ifstream object for file input, a read operation of an
integer might fail if the current file pointer points to a non-
numeric character or if the file pointer points to the end of filenumeric character or if the file pointer points to the end of file.

 We can push a value into a Stack object, only when the stack is not
full. We can pop a value out only when the stack is not empty.p p y p y

 An editor has two input modes: insert or overwrite. In the insert
mode, the input characters from the keyboard are inserted right p y g
before the cursor. In the overwrite move, the input characters
overwrite the characters at the cursor.

 An editor has two document modes: documents modified or not
modified.
A di h UI d d ifi d ifi d

30-4

 An editor has two UI modes: document specified or not specified.
 …

Introduction (cont’d)()

Note: 1 A very simple object might have a fixed state such that itsNote: 1. A very simple object might have a fixed state such that its
behavior is all the way consistent.

2. The timing of messages to an object with various internal2. The timing of messages to an object with various internal
states is important and determines how an object
responds.

3. Usually the states of an object cannot be observed directly
from outside. The messages an object received up to now
affect its current state and therefore its future behaviors.

30-5

Object Interface vs. Object Statej j
 The object interface depends also on its current state.
 Object interface (the usage of an object)

 Public operations (member functions)
 The sequence (order) of the operations being executed

 “Some operations are required to follow other operations” p q p
indicates the existence of object’s internal state.

 If a client program does not follow the pre-specified order If a client program does not follow the pre specified order
to use the interface, the object could possibly refuse to
respond and enter a special error state.respond and enter a special error state.
Ex.

A network communication end point

30-6

p

Party 1 Party 2network
data stream

Object with Statesj
class NetCommStream {
public: A stream can only be opened (for

 Usage description:
A stream can only be opened (forA stream can only be opened (forvoid open();

void connect();
void read();

id it ()

A stream can only be opened (for
setting up its own communication
interface) when it is not currently

A stream can only be opened (for
setting up its own communication
interface) when it is not currently

A stream can only be opened (for
setting up its own communication
interface) when it is not currently

void write();
void disconnect();
void close();

private:

opened. opened. A stream can only be
connected (for building up the
connection with a remote machine)

opened. A stream can only be
connected (for building up the
connection with a remote machine)private:

...
};

connection with a remote machine)
when it is opened but not connected
connection with a remote machine)
when it is opened but not connected.
A stream object can be read / write /

Correct usage:
NetCommStream obj;

disconnected only when it is connected
properly.

Incorrect usage:
NetCommStream obj;

obj.open();
obj.connect();
obj.read();

30-7

obj.open();
obj.read();

j ();
obj.disconnect();
obj.close();

Intuitive Implementationp
 Using bool variables to keep various kinds of states
void open() {

if (!m_fOpen) {
m_fOpen = true;

void disconnect() {
if (m_fConnected) {

m_fConnected = false;
do_open();

}
}

do_disconnect();
}

}
void connect() {

if ((m_fOpen)&&(!m_fConnected)) {
m_fConnected = true;

void close() {
if ((m_fOpen)&&(!m_fConnected)) {

m_fOpen = false;_ ;
do_connect();

}
}

_ p ;
do_close();

}
}

void read() {
if (m_fConnected)

do read();

void write() {
if (m_fConnected)

do write();

30-8

_ ();
}

do_write();
}

Two flags are used in the above implementation. 4 different states?
implicit and vague

Explicit Statep
 Two bool variables m_fOpen and m_fConnected define 4 legal

states
 Two bool variables m_fOpen and m_fConnected define 4 legal

states; but only 3 of them are meaningful to this applicationstates

m_fOpen m_fConnected State

states; but only 3 of them are meaningful to this application

false false
false true

Closed

true false
true true

Opened
Connected

 There are six possible events (messages) to this object
open
connect
read
write

30-9

disconnect
close

State Diagramg
connect,read,write,disconnect,close/NOP

Consider ALL possible

Closed

Consider ALL possible
events at the outgoing
branches of each state.

open/do_open() close/do_close()

Opened open,disconnect,read,write/NOP

connect/do_connect() disconnect/do_disconnect()

Connected
read/do read()

30-10
connect,open,close/NOP

_ ()

write/do_write()
Finite State Machine

State Diagram (cont’d)g ()
 Advantages:

Sh l lid i h di Show only valid states in the diagram
 Label each state with meaningful words
 Allow programmer to consider the full set of events at each state

 Simplify the considerations of server program logics A state Simplify the considerations of server program logics Simplify the considerations of server program logics A state Simplify the considerations of server program logics. A state
diagram for the server object shows a lot more design
information than a control flow diagram for the server. (The

 Simplify the considerations of server program logics.  Simplify the considerations of server program logics. A state
diagram for the server object shows a lot more design
information than a control flow diagram for the serverg (
server control flow diagram is incomplete and fragmented
without the client control flow diagram.)

g

 A control flow diagram of the client simply does not show
all possible ways of usages

30-11

all possible ways of usages.
See the following example…

Control Flow Diagram of A Clientg
 This is the control flow for the

TYPICAL / CORRECT usage of thisopened? TYPICAL / CORRECT usage of this
NetCommStream object.

 Problems:
open

 Problems:
 What if the client does not follow this

advised procedure?
E N t d b t d th t t th

opened and
not connected?

Eg. Not opened but do the connect at the
first step? Not connected but do the
read/write at the second step?

connect

not finished?
 What if there are other possible usage

patterns?
e.g. Opened but find no peer to connect

not finished?

read or write disconnect e.g. Opened but find no peer to connect
and then close immediately.
Disconnected but find some other peer
to connect

disconnected?

30-12

to connect.
close

Implementation of an FSMp
 Use a single enum type of variable to represent the state of the system

enum InternalStates {Closed Opened Connected};enum InternalStates {Closed, Opened, Connected};
InternalStates m_state;

 In an OO system, objects communicate with each other through events.
Take the event open and its handler open() as example:

1. For each open message of each state in the diagram
2. Implement the response in open()

void open() {
if (m_state == Closed) {

do open(); A systematic way of _ p ();
m_state = Opened;

}
else if (m state == Opened) ;

implementation for
a state diagram

30-13

else if (m_state Opened) ;
else if (m_state == Connected) ;

}

Implementation (cont’d)p ()
void close() {

if (m_state == Opened) {
do_close();
m_state = Closed;

}
}

void read() {
if (m state == Connected)} if (m_state == Connected)

do_read();
}void connect() {

if (m state == Opened) {
void write() {

if (m_state == Connected)
d it ()

if (m_state == Opened) {
do_connect();
m_state = Connected;

}

void disconnect() {

do_write();
}

}
}

void disconnect() {
if (m_state == Connected) {

do_disconnect();
m state = Opened;

30-14

m_state = Opened;
}

}

Modification over State Diagramg
 If the system specification is modified such that it is allowed to

close at the Connected stateclose at the Connected state
 It is a good idea to change the design on the state diagram directly

id l () {Closed

close/do disconnect() do close()

void close() {
if (m_state == Opened) {

do close();

Opened

close/do_disconnect(), do_close() _ ();
m_state = Closed;

}
else if (m state == Connected) {

disconnect/do_disconnect()
else if (m_state == Connected) {

do_disconnect();
do_close();

Connected
m_state = Closed;

}
}

30-15
connect, open/NOP read/do_read()

write/do_write()

}
connect,open,

close/NOP

Second Implementationp
 Use two enum types for the state of the system and the event

enum State {Closed, Opened, Connected};{ , p , };
enum Event {open, connect, read, write, disconnect, close};

 Implement all actions as functions
id d () { } id d l () { }void do_open() { … } void do_close() { … }

void do_connect() { … } void do_disconnect() { … }
void do_read() { … } void do_write() { … }

 Use a static state variable inside the Transition function
_ () { } _ () { }

switch (event) {
t

void Transition(Event event) {
i S Cl d case connect:

…
case close:

static State state = Closed;
switch (state) {
case Closed: …

} break;
case Connected:

switch (event) {
case open:

do open(); state = Opened;

30-16

…
}

}

do_open(); state = Opened;
} break;

case Opened:

OO Way – the State Patterny

interface
NetConnection

+d ()

Strategy
<<interface>>
NetConnState

closedState
openedState

+do_open()
+do_close()
+do_connect()
+do disconnect() m state # openedState

connectedState
+open(NetConnFSM *)
+close(NetConnFSM *)

+do_disconnect()
+do_read()
+do_write()

m_state

+close(NetConnFSM *)
+connect(NetConnFSM *)
+disconnect(NetConnFSM *)
+read(NetConnFSM *)NetConnFSM +read(NetConnFSM)
+write(NetConnFSM *, char)

NetConnFSM
+open()
+close()
+connect()+connect()
+disconnect()
+read():char
+write(char) Cl dS O dS C dS

30-17

+write(char)
+setState(NetConnState *)

ClosedState OpenedState ConnectedState

Implementation (1/4)p ()
 Actual network operations

class NetConnection {class NetConnection {
public:

void do_open() { … } void do_close() { … }
void do connect() { … } void do disconnect() { … }_ () { } _ () { }
char do_read() { … } void do_write(char x) { … }

};

 Interface for all states
class NetConnState {
public:public:

virtual void open(NetConnFSM *) = 0; virtual void close(NetConnFSM *);
virtual void connect(NetConnFSM *); virtual void disconnect(NetConnFSM *);
virtual char read(NetConnFSM *); virtual void write(NetConnFSM * char);

ClosedState NetConnState::closedState;
OpenedState NetConnState::openedState;

virtual char read(NetConnFSM *); virtual void write(NetConnFSM *, char);
protected:

static ClosedState closedState;
static OpenedState openedState;

30-18

OpenedState NetConnState::openedState;
ConnectedState NetConnState::

connectedState;Singleton

static OpenedState openedState;
static ConnectedState connectedState;

};

Implementation (2/4)p ()
 the Finite State Machine

class NetConnFSM: public NetConnection {class NetConnFSM: public NetConnection {
public:

NetConnFSM():m_state(&closedState) {}
id tSt t (N tC St t *) { t t }void setState(NetConnState *s) { m_state = s; }

void open() { m_state->open(this); }
void close() { m_state->close(this); }

 Usage:
void main() {

NetConnFSM conn obj;void connect() { m_state->connect(this); }
void disconnect() { m_state->disconnect(this); }
char read() { return m_state->read(this); }

NetConnFSM conn_obj;
conn_obj.open();
conn_obj.connect();
i bj d()void write(char x) { m_state->write(this, x); }

private:
NetConnState *m state;

int x=conn_obj.read();
…

conn_obj.write(x);_ ;
}; …

conn_obj.disconnect();
conn obj.close();

30-19

_ j ();
}Strategy, delegation of events

Closed for modification real event sequence

Implementation (3/4)p ()
 Actual states

class ClosedState: public NetConnState {class ClosedState: public NetConnState {
public:

void open(NetConnFSM *fsm) { void close(NetConnFSM *) {}
fsm->do open();fsm do_open();
fsm->setState(&openedState);

}
void connect(NetConnFSM *) {} void disconnect(NetConnFSM *) {}

class OpenedState: public NetConnState {

() {} () {}
char read(NetConnFSM *) { return 0; } void write(NetConnFSM *, char) {}

};

void connect(NetConnFSM *fsm) {
fsm->do connect();

class OpenedState: public NetConnState {
public:

void open(NetConnFSM *) {}
void close(NetConnFSM *fsm) { fsm do_connect();

fsm->setState(&connectedState);
}
void disconnect(NetConnFSM *) {}

void close(NetConnFSM fsm) {
fsm->do_close();
fsm->setState(&closedState);

}

30-20

() {}}
char read(NetConnFSM *) { return 0; }
void write(NetConnFSM *, char) {}

};

Implementation (4/4)p ()
class ConnectedState: public NetConnState {
public:

void open(NetConnFSM *) {}
void close(NetConnFSM *) {}
void connect(NetConnFSM *) {}

id di (N C FSM *f) {void disconnect(NetConnFSM *fsm) {
fsm->do_disconnect();
fsm->setState(&openedState);

}}
char read(NetConnFSM *fsm) {

return fsm->do_read();
}}
void write(NetConnFSM *fsm, char x) {

fsm->do_write(x);
}}

};
 Implemented through the “Strategy” and “Singleton” patterns

30-21

 Object Mentor Finite State Machine Compiler for Java/C++ code
http://www.objectmentor.com/resources/bin/smcJava.zip

