
Exception HandlingException Handling

C++ Obj t O i t d P iC++ Object Oriented Programming
Pei-yih Ting
NTOU CSNTOU CS

28-1

Contents
 Error handling strategies: error code, assert(), throw-try-catch
 C++ ways of error handling C++ ways of error handling
 Exceptions vs. assert()
 E h dli i C++ Error handling in C++
 Separated normal and error handling logic

E ti d t i ti Exception and termination
 Generic catch handler

S d d i l Standard exception classes
 Exception specifier
 Dynamic allocated memory
 Propagation of exceptions

28-2

 Pragmatics of exceptions
 Other than C++ exceptions

Error Handling Strategiesg g
 Error handling is a major source of programmer mistakes.
 Usually error handling is not considered in the design process and Usually error handling is not considered in the design process and

evolve chaotically in an ad hoc manner.
 In C most programs use return codes to handle error conditions In In C, most programs use return codes to handle error conditions. In

UNIX, there is also a global errno variable to indicate the type of
errors.

int *ptr = (int *) malloc(sizeof(int)*100);
if (ptr==0) {

cout << "Memory allocation failure!\n";cout Memory allocation failure!\n ;
// some other resource management tasks, ex. Freeing some memory
return 0; // return an error code to be handled by the calling program

}
 Problems:

 Return code is a nice-guy approach; it allows the caller to do

}

28-3

g y pp ;
something when an error occurs but it doesn’t require the caller to
do anything.

Error Handling Strategies (cont’d)g g ()
 Problems: (cont’d)

 Explicit if-check: this type of error processing code is many Explicit if-check: this type of error processing code is many
times longer than the normal processing code. It repeats quite
often. However, the probability that these codes get executed

b 1 f 1000may be 1 out of 1000.
Cause code-explosion (each error has a different handling

program segment even the same error ex File cannot beprogram segment, even the same error, ex. File cannot be
opened, has different handling strategies at each occurrence.
ex. At each occurrence of memory allocation error, the

f b d ll d diff)segments of memory to be deallocated are different.)
 These error handling codes are hard to test and maintain.
Obsc re the normal program logic make them hard to testObscure the normal program logic, make them hard to test

and maintain also.
Cause efficiency loss, especially with OO fine-grained

28-4

Cause efficiency loss, especially with OO fine grained
member functions.

Error Handling Strategies (cont’d)g g ()
 Problems: (cont’d)

 Cannot handle errors in ctor dtor type conversion operator Cannot handle errors in ctor, dtor, type conversion operator, ….
 It is clumsy to return from a deep function call and handling the

resources gracefully during its return Intermediate callers mightresources gracefully during its return. Intermediate callers might
not know how to handle the error but it need to pass the error
code and information back to the calling routine.g

 Error code is a simple integer, can not carry sufficient amount of
information with it.

 Sometimes the return value is used for some other important
things (normal logics which occur more frequently than errors).

 C++ supports a better error handling mechanism

28-5

try { … throw … } catch (…) { … }

Throwing an Exceptiong p
void Stack::push(int element) throw(int) {

if (isFull()) throw element;
 create an exception

m_top++;
m_array[m_top] = element; in a special exception

 create an exception
object (variable)



}
p p

area (not on calling stack)

 hi i bj

void main() {
Stack stack;

 this exception object stays
alive till this exception is
handled completely by a

try {
stack.push(1);
stack push(2); handled completely by a

catch segment (and not
re-thrown), destructed

stack.push(2);
stack.push(3);
stack.push(4);),

thereafter}
catch (int element) {

cout << "Stack overflow with element " << element << " \n";

28-6

Output:
Stack overflow with element 3.

cout << Stack overflow with element << element << .\n ;
}

}

Error Handling Strategies (cont’d)g g ()
 Advantages of try-throw-catch mechanism

F h d b h dl d Force the occurred errors to be handled
 The handling position of an exception can be far away from

here it happenswhere it happens.
 Normal logic is separated from exception handling logic.

T it bit il l t f i f ti f th Transmit arbitrarily large amount of information from the error
occurring position to the error handling position.

 Automatically handle the destruction of objects on the stack Automatically handle the destruction of objects on the stack
frames until the place where exception is ultimately handled.

 Allow different error handlers to be defined for different types of Allow different error handlers to be defined for different types of
objects. One can design a hierarchy of different types of errors.

28-7

In summary: Reduced coding and testing costs

Throwing an Exception (cont'd)g p ()
 What happens if you don't try to catch the exception?

void main() {void main() {
Stack stack;
stack.push(1);
stack.push(2);

The exception will still be thrown
and the program terminates (with stack.push(2);

stack.push(3);
stack.push(4);

}

a runtime error).

void main() {

}
 What happens if you don't catch the exception?

Stack stack;
try {

stack.push(1);

Compilation error!!
p ();

stack.push(2);
stack.push(3);
stack.push(4);

28-8

}
}

How it works
 When an exception is raised by the “throw” statement, the nearest

catch block that handles the specified exception is executedcatch block that handles the specified exception is executed.
 The execution continues with the next statement after the catch block.
 In a try block when throw is executed the try block finalizes right In a try block, when throw is executed, the try block finalizes right

away and every object created within the try block is destroyed.
 Anywhere in a program when throw is executed the routine finalized Anywhere in a program, when throw is executed, the routine finalized

right away and every local object on the stack is destroyed.
 The remaining codes after throw statement are skipped just as in the The remaining codes after throw statement are skipped, just as in the

case of the return statement in a function.

 When no exception is raised in the try block the catch block is skipped When no exception is raised in the try block, the catch block is skipped.

main()
f()

28-9

()
g()

h()
i()

throw

Throw Exceptionsp
 You can throw exceptions anywhere in a try block and

t ll h i thactually anywhere in the program.
 Exceptions can be thrown in functions called within a try

block and caught by a catch block following a try block.
 The expression following the throw keyword determines

the type of the exception.
 Use a temporary object as the throw argument, e.g.

throw std::runtime_error("open file error");
 Do not throw the address of a locally defined variable, array, or

object, C++ does not guarantee whether the stack is unwound
before (g++) the catch block executes or after (vc2010) the catch
block finishes

28-10

block finishes.
 Uncaught exceptions go up towards the main program.

Throw Multiple Exceptionsp p
 A function can throw as many types of errors as it pleases.

The value thrown back determines which catch handler is invoked

// g++ demands this
// i ifi

void Stack::push(int element) throw(int, char *) {
if (isFull()) throw element;

// exception specifier
// but vc2010 ignore it

if (m_top<0) throw "Stack is underrun!";
m_array[m_top++] = element;

}

 Catch inside the calling function
}

try {try {
…
stack.push(1);

}}
catch (int element) {

cout << "Stack overflow with element " << element << ".\n";
}

28-11

catch (char *errorMsg) {
cout << errorMsg;

}

Catch Exceptionsp
 The type of the parameter to the catch statement is defined as in

function declaration, usually use reference type of parameters, e gfunction declaration, usually use reference type of parameters, e.g.
catch (overflow_error &e), to avoid another copy and enjoy the
polymorphic behaviours.

 You must supply at least one catch block for a try block.

 Catch blocks must immediately follow the try block without any y y y
program code between them.

 Catch blocks will catch exceptions of the correct type that occur in
the code in the immediately preceding try block, including the ones
h b f i ll d i hi h bl k

28-12

thrown by functions called within the try block.

Exceptions vs. assert()p ()
 assert():

C h i i h SHOULD NOT h (b did h) Catches situations that SHOULD NOT happen (but did happen).
E.g. promise made by other classes. Basically these are cases
you don’t want to handle (at least not specified in the programyou don t want to handle (at least not specified in the program
specification).

 Typically disabled before product delivery! Typically disabled before product delivery!
 Should not be seen by the end customer!
 Checking to track down programmer’s own bugs Checking to track down programmer s own bugs

 Exception:
 Should be seen by people using your code Not disabled in the Should be seen by people using your code. Not disabled in the

final released version.
 Indicates user errors (e g invalid argument errors)

28-13

 Indicates user errors (e.g. invalid argument errors)
 Indicates some system errors (e.g. file not found)

Problems with assert()()
 Your program stops immediately. Usually used in debugging.
 Why should your program continue if an error has occurred? Why should your program continue if an error has occurred?

1. Non-fatal errors
void Stack::push(int element) {void Stack::push(int element) {

assert(!isFull());
m_top++;
m array[m top] = element;m_array[m_top] = element;

}
The failure of the call to push may be non-fatal to the rest of the program.

2. Failing gracefully
p = new int[kBigArraySize];
assert(p!=0);assert(p!=0);

Although the memory is insufficient, the user may want to save the
existing data before quitting.

28-14

3. Safety-critical programming
The patient will die if the software crashes. / System will be hacked.

Self-driving Car

Error Handling in C++g
 Three levels:

() h h h ifi i f h assert() statements: those errors that the specification of the
program excludes. You don’t want it to be handled
automatically by your programautomatically by your program.

 If statements: those expected situations that happened normally
and quite often eg user enter incorrect data file not openedand quite often, eg. user enter incorrect data, file not opened, …

 Exceptions: those expected/unexpected situations that happened
l (1 t f 100) di k O trarely (say 1 out of 100), eg. disk access errors, … Or, you want

to avoid long/ugly error handling codes…

Rule of thumb: If in doubt, use exceptions
Sometimes, there are still practices of using a single goto statement

28-15

to handle all sorts of memory deallocation after program fails. In
general, this mechanism can be replaced by the exception handling.

Separate Normal and Error Handlingp g
 Example:

#include <stdexcept>#include <stdexcept>
using namespace std;
Matrix add(const Matrix &a, const Matrix &b)

throw(overflow error underflow error);throw(overflow_error, underflow_error);
Matrix sub(const Matrix &a, const Matrix &b)

throw(overflow_error, underflow_error);

…
void solutionA(const Matrix &a, const Matrix &b) throw(underflow_error) {

try {try {
cout << "a + b is " << add(a, b) << "\n";
cout << "a - b is " << sub(a, b) << "\n";
cout << "a * b is " << mul(a b) << "\n"; Normal logiccout << a b is << mul(a, b) << \n ;
cout << "a / b is " << div(a, b) << "\n";

}
catch (overflow error &e) {

g

28-16

catch (overflow_error &e) {
cout << "overflow: " << e.what() << "\n";

}
Error handling logic

Tangled Normal and Error Handlingg g
ReturnCode solutionB(const Matrix &a, const Matrix &b) {

Matrix result;
R t C d enum ReturnCode {ReturnCode rc;
rc = add(result, a, b);
if (rc == OK) {

enum ReturnCode {
OK,
OVERFLOW_ERROR,
UNDERFLOW ERRORcout << "a + b is " << result << "\n";

} else if (rc == OVERFLOW_ERROR) {
cout << "overflow error: Matrix + Matrix\n";

UNDERFLOW_ERROR
};
;

return OK; // error has been handled
} else {

return rc; // leaving the unhandled error to calling functionreturn rc; // leaving the unhandled error to calling function
}
rc = sub(result, a, b);
if (rc == OK) {if (rc == OK) {

cout << "a - b is " << result << "\n";
} else if (rc == OVERFLOW_ERROR) {

t << " fl M t i M t i \ "

28-17

cout << "overflow error: Matrix - Matrix\n";
…

}

Exception and Terminationp
 What happens if we don't catch some types of exception?

The program terminates by calling a global (predefined) terminate().p g y g g (p) ()
 You can override the built-in terminate() function

void myTerminate() {
cout << "I am terminated \n";cout << I am terminated.\n ;
abort();

}
void main() {void main() {

set_terminate(myTerminate);
Stack stack;
try {y {

stack.push(1);
stack.push(2);
stack.push(3);p ();
stack.push(4);

}
catch (char *errMsg) {

28-18

cout << errMsg;
}

}

Generic Catch Handler
 You can specify a handler to catch any type of exception that is

thrown in a try block:thrown in a try block:
catch (…)
{

// code to handle any exception
}

Thi h bl k l f ll h f i

catch (int element)

 This catch block must appear last after all other types of exception
handlers if you have other catch blocks defined for the try block.

catch (int element)
{

// code to handle any exception
}
catch (…)
{

28-19

{
// code to handle any exception

}

Standard Exception Classesp
 Some predefined exceptions in C++ standard library <stdexcept>

Root: exceptionRoot: exception
Main categories:

logic error exception::what()logic_error
runtime_error

p ()
returns the error message

exception

logic_error runtime_error

d i l th d fl

invalid argument
out_of_range

overflow error

domain_error length_error range_error underflow_error

28-20

_ g _

Exception Classes (cont’d)p ()
 You can use the standard exception classes

int div(int i1, int i2) throw(invalid_argument) {

This temporary object will be copied to an exception object and
d t d i di t l At th d f th t h t t t th t

if (i2 == 0) throw invalid_argument("Divided by 0!\n");
return i1/i2;

}
destroyed immediately. At the end of the catch statement that
handles this exception, the exception object will be destructed.

class NoGas: public runtime error {
 You can derive

your own exception class p _ {
public:

NoGas(const string &what) throw();
};

y p
from the standard exception
classes if the category
matches NoGas::NoGas(const string &what) throw():

runtime_error(what) {
}

matches.

 Define your own exception class hierarchy: A monolithic hierarchy
of exception classes works better than a forest. This allows all
uncaught exceptions be caught by catch (exception &root class)

28-21

uncaught exceptions be caught by catch (exception &root_class),
where root_class is a polymorphic reference, instead of catch(…)
statement, inside which you can not even print the cause of error.

Exception Classes (cont’d)p ()
class Fred {};
class Wilma {};

void main() {
for (int i=0; i<10; i++) {

{class Wilma {};
void sample() throw(Fred, Wilma) {

switch (rand()%3) {
case 0:

try {
cout << "trying: \n";
sample();case 0:

cout << "throwing a Fred\n";
throw Fred();

case 1:

cout << "no exception thrown\n";
}
catch (Fred &) {case 1:

cout << "throwing a Wilma\n";
throw Wilma();

default:

() {
cout << "caught a Fred\n";

}
catch (Wilma &) {default:

cout << "returning normally\n";
}

}

catch (Wilma &) {
cout << "caught a Wilma\n";

}
catch () {} catch (…) {

cout << "this should "
"never happen\n";

}

28-22

}
}

}

Exception Specifier (Throw List)p p ()
 A function can optionally declare what it throws in exception

specifiers (also called a “throw list”).specifiers (also called a throw list).
class Stack {
public:p

…
void push(int element) throw(int, char*);p () (,);
…

};.
 Including the throw list with the function definition

};.

void Stack::push(int element) throw(int char *) {void Stack::push(int element) throw(int, char *) {
…

}

28-23

}

This is optional but in general should be provided.

Violating the Throw Listg
 What happens if you try to throw a different type than in the throw

specification? The program calls a global function unexpected()specification? The program calls a global function unexpected().
The default implementation of unexpected() calls terminate() to end
the program.

 You can provide your own unexpected handler to replace
std::unexpected() and rethrow an exception which you handle

void myUnexpected() {
throw("an unexpected exception has occurred.");

}

std::unexpected() and rethrow an exception which you handle

}

 Setting the function
void main() {

set_unexpected(myUnexpected);
…

}

28-24 This allows the client to protect itself against errors in a server class.

}

Dynamically Allocated Memoryy y y
 What happens to a segment of dynamically allocated memory whose

deallocation is skipped by an exception?pp y p
void Foo() {

Stack *stack = new Stack;
int *temp = new int[100];int temp new int[100];
stack.push(1); // exception is thrown
delete [] temp;
delete stack;

void main() {
try {

;
} memory leakage

Foo();
}
catch (int element) {

cout << "Stack overflow with element " << element << endl;
}

}

28-25

 The compiler will automatically call the destructor for all objects on
the unwound stack frames BUT not dynamically allocated objects.

Dynamically Allocated Memory(cont’d)y y y()
 Solutions to the problem:

U i bj h k Use automatic objects on the stack
 Use container classes instead of raw C arrays
 Wrap the raw C arrays or dynamically allocated objects within

an object that is allocated on the stack. That wrapper object
deletes the dynamically allocated resources in its destructordeletes the dynamically allocated resources in its destructor.

 Use the managed pointer object instead of the raw pointer.

 Sometimes, opening files is similar to dynamically allocated
memory If you met an exception while the file is openedmemory. If you met an exception while the file is opened
explicitly with fopen() calls, the try-catch mechanism does not
call fclose() automatically. The solution is still wrap the file

28-26

operations inside a file object, for example, ifstream.

Propagation of Exceptionsp g p
 Uncaught exceptions will go up the calling stack till it find a

matched handlermatched handler.

void main() {
 Exceptions may also pass through levels of handlers

void main() {
try {

Foo();
}

void SomeClass::Foo() {
try {

m_stack.push(4); }
catch (int element) {

cout << "Stack not expanded "
"after element " << element << endl;

}
catch (int element) {

if (m_size<10000) { after element element endl;
}

}
m_stack.expandStack();
m_stack.push(element);

}
lelse

throw;
// rethrows the original exception object

}

28-27

}
}

Pragmatics of Exceptionsg p
 Exceptions should be really exceptional (i.e. true errors). Unusual

cases should be handled by normal logic using return value and if-cases should be handled by normal logic using return value and if-
statement, ex. Reaching EOF in reading data.

 A function should throw an exception when anything occurs that A function should throw an exception when anything occurs that
prevents it from fulfilling its promises (i.e. its contract).

 Responsibilities of the Server class and the Client classp
 Server: give the client of the class the means to avoid exceptions if possible.

For example, provide an isFull() function for the Stack class.
Cli t id ti ti th th t hi th Client: consider preventing exceptions rather than catching them.

 The hardest part of using exception handling mechanism is to decide
what is an error and when an exception should be thrownwhat is an error and when an exception should be thrown.
 This is specification (or contract) dependent.
 If the specification said that data should always be saved. Then problems in

28-28

p y p
opening files are not errors and should be handled by regular program
segments.

Pragmatics of Exceptions (cont’d)g p ()
 When should a function catch an exception? When it knows what to

do with it When it has the sufficient information to recover from itdo with it. When it has the sufficient information to recover from it.
 Should a catch block fully recover from an error? If possible. But

sometimes the best that can be done are some cleanup and a rethrow.sometimes the best that can be done are some cleanup and a rethrow.
 A constructor should throw an exception when it meets an error.
 What should a composed object do when its member object throws What should a composed object do when its member object throws What should a composed object do when its member object throws What should a composed object do when its member object throws What should a composed object do when its member object throws

class Composed {
…

private:

 What should a composed object do when its member object throws
an exception at its construction?

 What should a composed object do when its member object throws
an exception at its construction? Nothing.

 What should a composed object do when its member object throws
an exception at its construction? Nothing.
If after successful construction of m_obj1,

 What should a composed object do when its member object throws
an exception at its construction? Nothing.
If after successful construction of m_obj1,

 What should a composed object do when its member object throws
an exception at its construction? Nothing.
If after successful construction of m_obj1,

private:
Ingredient1 m_obj1;
Ingredient2 m_obj2;
int *m data;

the constructor of m_obj2 fails and throws
an exception
the constructor of m_obj2 fails and throws
an exception, the composed object is not
fully constructed and the destructor of m obj1

the constructor of m_obj2 fails and throws
an exception, the composed object is not
fully constructed and the destructor of m obj1 int m_data;

};

Composed::Composed(int size):m obj1() m obj2() {

fully constructed and the destructor of m_obj1
is called.
fully constructed and the destructor of m_obj1
is called. (Note: m_data was not allocated
and the dtor

28-29

Composed::Composed(int size):m_obj1(), m_obj2() {
m_data = new int[size];

} failure

a d e d o
~Composed() will
not be invoked.)

Pragmatics of Exceptions (cont’d)g p ()
 Should destructors throw exceptions when they fail? NO.

If a dtor throws an exception during the stack-unwinding process of
another exception, terminate() is invoked, which kills the program.

At the same time, if a dtor calls some routines that may throw
exceptions it should catch all possible errorsexceptions, it should catch all possible errors.

28-30

Other than C++ Exceptionp
 There are three exception handling mechanisms you can use with

C++ on MS Windows:C++ on MS Windows:
 C++ exceptions, implemented by the compiler (try/catch), cl /EHsc
 Structured Exception Handling (SEH), provided by Windows

(__try / __except), cl /EHa
 MFC exception macros (TRY, CATCH - built on top of SEH / C++

exceptions)exceptions)

 C++ exceptions guarantee automatic cleanup during stack
unwinding (i.e. dtors of local objects), the other mechanisms don't.u w d g (.e. d o s o oca objec s), e o e ec a s s do .

 C++ exceptions only occur when they are explicitly thrown.
Structured Exceptions may occur for any operations (especially p y y p (p y
divide by zero, H/W, and invalid memory access, S/W).

 MFC introduces the macros to support exception handling even if
compilers didn't implement them.

28-31

Other than C++ Exception (cont’d)p ()
for (y=3; y>=0; y--)

try { cl /EHsc testCException cppy
int x=1, *z=0;
if (y==3) throw exception("explicit");
else if (y==2) throw 'a';

cl /EHsc testCException.cpp
exception caught
char exception caught

else if (y 2) throw a ;
else if (y==1) *z = 10; // illegal memory access
else // (y==0)

x = x/y; // divide by zerox = x/y; // divide by zero
}
catch (exception) {

cout << "exception caught\n";cout << exception caught\n ;
}
catch (char e) {

cout << "char exception caught\n";
cl /EHa testCException.cpp
exception caughtcout << char exception caught\n ;

}
catch (...) {

cout << "... caught\n";

p g
char exception caught
... caught

caught

28-32

g ;
}

... caught

Other than C++ Exception (cont’d)p ()

f (3 0)

DWORD FilterFunction(unsigned int code) {
if (code == 15)

C O CO S A C
 SEH
for (y=3; y>=0; y--)
__try {

__try {

return EXCEPTION_CONTINUE_SEARCH;
else

return EXCEPTION_EXECUTE_HANDLER;
int x=1, *z=0;
if (y==3)

RaiseException(15,0,0,NULL);

} like rethrow
Both cl /EHsc or cl /EHa workp (, , ,);

else if (y==2) throw 'a';
else if (y==1) *z = 10;
else x = x/y;

15 outer exception caught
3765269347 exception caught
3221225477 exception caughtelse x x/y;

}
__except (FilterFunction(GetExceptionCode())) {

cout << GetExceptionCode() << " exception caught\n";

3221225620 exception caught

cout << GetExceptionCode() << exception caught\n ;
}

}
t (EXCEPTION EXECUTE HANDLER) {

28-33

__except (EXCEPTION_EXECUTE_HANDLER) {
cout << GetExceptionCode() << " outer exception caught\n";

}

