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ODbject-Oriented Analysis

An object-orientated design provides a more natural and systematic
framework for specifying and designing a programming solution.

Program designs are almost always based on the program
specification, i.e. a document describing the exact requirements a
program is expected to achieve.

Four phases of the object-oriented analysis process:
The identification of objects from the program specification.
The identification of the attributes and behaviours of these objects.
The identification of any super-classes.
The specification of the behaviours of the identified classes.
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Composition/aggregation and inheritance are the most important two
ways to construct object hierarchies.

In the OOA process, after objects are identified from the problem
domain and attributes and behaviors are modeled with classes in the

analysis process, the next important phase is the identification of
super-classes in the problem domain

In the language level, a super-class defines the attributes and
behaviors that are common to all its sub-classes.

Base class Derived class
Super-class : Sub-class
Parent class Child class
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class Student { class Student {

public: public:
Student(); Student();
~Student(); ~Student();
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_ Int stipend);
int getAge() const; int getAge() const;
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char *m_name; private:

int m_age; char *m_name;
1; int m_age;
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&

<+ Want to add fields to handle the requirements for graduate students
What is the problem of this design?
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< In the above design

* Student becomes a general purpose class, a set of attributes and
Interfaces are used for undergraduate students, while another set
of attributes and interfaces are used for graduate students
... a form with many redundant fields

* In the process of this change, all previously developed programs,
Including those implementations of the Student class and those
codes that are the client programs of the Student class, have to
be recompiled.... This change is global, not limited to the part
you plan to add.

OCP: open-closed principle

Software entities (classes, modules, functions, etc.)

should be open for extension, but closed for modification.
25-7
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New member functions

Graduate::Graduate(char *name, int age, int stipend) : m_stipend(stipend) {
setData(name, age); // this is inherited from Student
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}
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Protected Data and Functions

< Can we give the derived class access to "private" data of base class?

class Student {

public:
Student();
~Student();

;’85’_ setData(char *name, int < The following is now legal
Int detAge() const; Int Graduate::getStipend() const {

const char *getName() const; If (m_age > 30)

protected: return 0;
char *m_name,; ) return m_stipend;

Int m_age;

%

Note: the encapsulation

< Who can access protected fields? perimeter Is enlarged

: a great deal with
* base class and friends of base class "protected” in your

* derived class and friends of derived design
classes
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Basic Inheritance (cont’d)

< Most of the member functions of the base class are implicitly
Inherited by the derived class except

x The constructor (including copy ctor)
* The assignment operator
* The destructor

< They are synthesized by the complier again if not explicitly defined.
The synthesized ctor, dtor, and assignment operator would chain
automatically to the function defined in the base class.
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< In this case, the correct form of the constructor for Graduate Is

Graduate::Graduate(char *name, int age, int stipend)

Studenténame age), m_stipend(stipend) {
j ); /] setData() is inherited from Student

Student::Student(char *name, int age) : m_age(age) {
m_name = new char[strlen(name)+1]
strcpy(m_name, name);

< You cannot initialize base class members directly in the initialization
list even if they are public or protected, i.e.

Graduate::Graduate(char *name, int age, int stipend)
: m_age(age), m_stipend(stipend)

error C2614: '‘Graduate’ : illegal member initialization: 'm_age' is not a base
or member

< Base class guarantee

The base class will be fully constructed before the body of the
derived class constructor Is entered
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<~ Copy constructor is also a constructor. Member objects and base
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< What happens in main()

void main() {

Graduate student(**"Michael'", 24, 6000, "* 8899 Storkes Rd."");

cout << student.getName() << " is " << student.getAge() << "" years old and "'
<< "has a stipend of "' <, student.getStipend() << "dollars.\n""
<< "His address is " << student.getAddress() << ""\n"";

}

The output is:
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Michael is 24 years old and has a stipend of 6000 dollars.
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In Graduate dtor chaining
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< The compiler automatically calls each dtor when the object dies.
< The dtors are invoked in the opposite order of the ctors

* In destructing the derived object, the base object is still in scope and
functioning correctly.
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Chaining of Assignment Operator

< By default, the compiler adds a “bit-wise copy” assignment operator
for every class which you do not define an assignment operator

< If you have a class hierarchy where a class Derived Base
Inherits from a class Base. There are 4 possibilities in 4
defining their assignment operators: Derived |
1. If both classes do not have assignment operator: both are bit-wise copy

2. If you define Base& Base::operator=(Base &) but not
Derived& Derived::operator=(Derived &), then compiler synthesizes

r\r\ I\A D nf\l":\ lf\fJ"f\If\f\lFf\"'f\lf—/r\f\ ' f\fd D IFIf\f\\ r
LJCIIVEUGL CTTVEU..UPCIAlul —=(JEITTIVEU AL TIS)

Base::operator=(rhs); // calling your function

return *this;

}

3&4. If you define Derived& Derived::operator=(Derived &rhs) yourself, you have
to call Base::operator=(rhs); in Derived:.operator=(Derived) no matter it is
synthesized or not; otherwise the Base part of the object would not be copied.25_19




_ayers of Inheritance

< Let us add a new type of graduate student




_ayers of Inheritance

< Let us add a new type of graduate student
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public:
Student(char *name, int age);
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const char *getName() const;
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_ayers of Inheritance

< Let us add a new type of graduate student

class Student {
public:
Student(char *name, int age);
~Student();
void setData(char *name, int age);
int getAge() const;
const char *getName() const;
private:
char *m_name;
Int m_age;

}

class Graduate: public Student {
public:
Graduate(char *name, int age, int stipend);
Int getStipend() const;
private:
int m_stipend;

}




_ayers of Inheritance

< Let us add a new type of graduate student
class Student { class ForeignGraduate: public Graduate {

public: public: _
Student(char *name, int age): ForeignGraduate(char *name, int age,
~Student(); int stipend,
void setData(char *name, int age); char *nationality);
int getAge() const; ~ForeignGraduate()
const char *getName() const; const char *getNationality();

private: private:

char *m_name;
Int m_age; }:

}

char *m_nationality;

class Graduate: public Student {
public:
Graduate(char *name, int age, int stipend);
Int getStipend() const;
private:
int m_stipend;

}




_ayers of Inheritance (cont’d)

Student




x ctor of Student

Student::Student(char *name, int age) : m_age(age) {
m_name = new char[strlen(name)+1];
strcpy(m_name, name);
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x ctor of Student

Student::Student(char *name, int age) : m_age(age) {

m_name = new char[strlen(name)+1];
strcpy(m_name, name);
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_ayers of Inheritance (cont’d)

x ctor of Student

Student::Student(char *name, int age) : m_age(age) {
m_name = new char[strlen(name)+1];
strcpy(m_name, name);

Student
.7
direct hase class ﬂl

~

Graduate

x ctor of Graduate invokes the ctor of its direct base class - Student
Graduate::Graduate(char *name, int age, int stipend)
: Student(name, age), m_stipend(stipend) {
}




_ayers of Inheritance (cont’d)

x ctor of Student

Student::Student(char *name, int age) : m_age(age) {
m_name = new char[strlen(name)+1];
strcpy(m_name, name);
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x ctor of Graduate invokes the ctor of its direct base class - Student
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x ctor of Student

Student::Student(char *name, int age) : m_age(age) {
m_name = new char[strlen(name)+1];
strcpy(m_name, name);
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Graduate
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ForeignGraduate

x ctor of Graduate invokes the ctor of its direct base class - Student
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\ : Student(name, age), m_stipend(stipend) {

x ctor of ForeignGraduate invokes the ctor of its direct base class - Graduate

ForeignGraduate::ForeignGraduate(char *name,
Int age, int stipend, char *nationality)
: Graduate(name, age, stipend) {
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Int age, int stipend, char *nationality)
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strcpy(m_nationality, nationality);
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In the previous example, suppose we would like to have a display()
member function in the Student class that shows the details of a
Student object on the screen, ex.

void Student::display() const {
cout << m_name << " is " << m_age << "years old.\n"";

}
The Graduate class automatically inherits this member function.

However, the output of this function for a Graduate object is in a
way short of many important data.

We would like to redefine this function in the derived class -
Graduate, such that it will show the stipend and address together.

void Graduate::display() const { // masks the inherited version of display()
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Note: function signature is exactly the same as in the base class. re 2
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<~ Example usage of the previous design:

Student student1(*"Alice", 20);
Graduate student2(**Michael"’, 24, 6000, '*8899 Storkes Rd."");

studentl.display(); // Student::display() . e - Student
cout << "\n'; ctor(), dtor() | m_name = "Mel"
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<~ Note: display() interface usually
can enhance the encapsulation, replacing the
functionality of trivial accessor functions
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< Avoid the redundancy of the common code, Student::display(),
In the Inherited version of display(), Graduate::display(), by

void Graduate::display() const // masks the inherited version of display() {
Student::display(); // invoke the inherited codes
cout << ""He has a stipend of " << m_stipend << " dollars.\n"";
cout << ""His address is " << m_address << ".\n"";

}

< The functions defined in the base class are OK for most derived
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< The University database program

e - Student *"ctor(), dtor() | - Graduate Student

“ctor(), dtor() | “m pame getStipend() | i :

Sei[z\ata(()) m_age getAddress() | : n? tlrjlgﬁgt i f

e e ° . — :

getNgme() setData() s : Graduate
getAge() m_stipend
getName() m_address

<~ We would like to add a class Faculty, whose attributes include

{ m_name room # and building id of the office
m_age

m_address

- Note that there iIs no stipend.

< Should Faculty be derived from Student or Graduate or none of both?

< Let us first try inheriting Faculty from Graduate since the two groups

have so much data in common .
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< Deriving Faculty from Graduate makes a very efficient reuse of codes
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< Deriving Faculty from Graduate makes a very efficient reuse of codes
class Faculty: public Graduate { Student

public:
Faculty(char *name, int age, char *address, char *rank); Zr
~Faculty();

const char *getRank() const; Graduate

private:
char *m_rank;

g : : : Faculty
<~ We are forced to ignore Graduate::m_stipend in ctor
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: Graduate(name, age, 0, address) {
m_rank = new char[strlen(rank)+N Zero is a dummy
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< However, the client can still do this
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You can spare a data member but cannot
turn off an interface of the base class.
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Exploring Solutions (cont’d)

< Deriving Faculty from Graduate makes a very efficient reuse of codes
class Faculty: public Graduate { Student

public:
Faculty(char *name, int age, char *address, char *rank); Zr
~Faculty();

const char *getRank() const; Graduate

private:
char *m_rank;

g : : : Faculty
<~ We are forced to ignore Graduate::m_stipend in ctor

Faculty::Faculty(char *name, int age, char *address, char *rank)
: Graduate(name, age, 0, address) {
m_rank = new char[strlen(rank)+N Zero is a dummy

strcpy(m_rank, rank); value for the stipend

< However, the client can still do this

Faculty prof(*'Lin", 40, "'#2 Bei-Ning"", ""Associate Professor");
cout << prof.getStipend();

You can spare a data member but cannot
Thisis NOT a good solution! turn off an interface of the base class.
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char *m_address;

char *m_rank;
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Another Possible Solution

<~ How about deriving Faculty from Student because
Faculty requires all of the data from Student

class Faculty: public Student {

public:
Faculty(char *name, int age, char *address, char *rank);
~Faculty();
const char *getRank() const; Student
const char *getAddress() const;

private: Z%
char *m_address;
char *m_rank;

};

<~ What is the problem now?

* Faculty duplicates some codes in Graduate: m_address related

* What happens if Student adds a field for "undergraduate advisor"?
x The problem is that Faculty is intrinsically not a Student.

“Inheritance SHOULD NOT be designed based on solely
Implementation considerations — eg. code reuse.”

Graduate Faculty
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A Better Design

Create a Person class and put everything common to all people in
that class, all other classes are derived from this class.

Person

getAge()
getName()
m_age

Student is replaced by m_name
Undergraduate AN

Undergraduate Graduate Faculty

getStipend() getRank()
getAddress() getAddress()
m_ stipend m_rank
m_address | m_address

Should we eliminate UnderGraduate \/4

and use only Person in its place? Is there any redundancy?

Should Graduate be derived from Undergraduate?
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< Anyone who needs an office can then inherit from Office.
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Inherit name and age categories so this o
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Adding an Office Class

< Codes related to address could be merged into a single copy. How
about encapsulating all data related to the address in the Office class?

< Anyone who needs an office can then inherit from Office.

< But Graduate and Faculty still need to Office
Inherit name and age categories so this o
design forces us to this inheritance

Graduate Faculty

Z% Bad design!! Problematic!!?

What's wrong?

Undergraduate

o If the Office has a clean() method,
% The Faculty automatically has a
clean() method. What does it mean?

Graduate Faculty » What if a faculty has two offices?
25-33
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class Office: public Person {
public:
Office(char *name, int age, char address);
~Office()
const char *getAddress() const;
private:
char *m_address;

1
class Graduate: public Office {

public:
Graduate(char *name, int age, int stipend, char *address);
Int getStipend() const;
private:
Int m_stipend;
};
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public:
Faculty(char *name, int age, char *address, char *rank);
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Code for Office Solution

class Office: public Person {
public:

Office(char *name, int age, char address);

~Office()

const char *getAddress() const; :
private: Poor design!!

h * . -
g, T e Problematic!!?

class Graduate: public Office {
public:
Graduate(char *name, int age, int stipend, char *address);
Int getStipend() const;
private:
Int m_stipend;
};
class Faculty: public Office {
public:
Faculty(char *name, int age, char *address, char *rank);
~Faculty();
const char *getRank() const;
private:
char *m_rank;
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Final Solution

< Back to our original inheritance design (good design)

Person
AN

[
Undergraduate Graduate —| Faculty | Office

+ Instead of having Graduate and Faculty inherit from Office, we

store an Office object within each classes
< The office class exists separately, without involving any inheritance

< Codes:
class Office {
public:
Office(char *address);
~Office();
const char *getAddress() const;

private:
char *m_address;

b




Final Solution (cont’d)

class Graduate: public Person {
public:
Graduate(char *name, int age, int stipend, char *address);
int getStipend() const;
const char* getAddress() const;
private:
int m_stipend;
Office m_office;

&




Final Solution (cont’d)

class Graduate: public Person {

public:
Graduate(char *name, int age, int stipend, char *address);
int getStipend() const;
const char* getAddress() const;

private: )
int m_stipend; 2 {
Office m_office; public:

: « Faculty(char *name, int age, char *address, char *rank);

~Faculty();

const char* getAddress() const;

const char *getRank() const;
private:

char *m_rank;

Office m_office;

h
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public:
Graduate(char *name, int age, int stipend, char *address);
int getStipend() const;
const char* getAddress() const;
private: )
int m_stipend; 2 {
Office m_office; public:
: « Faculty(char *name, int age, char *address, char *rank);
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Final Solution (cont’d)

class Graduate: public Person {
public:
Graduate(char *name, int age, int stipend, char *address);
int getStipend() const;
const char* getAddress() const;
private: )
int m_stipend; 2 {
Office m_office; public:

1 Faculty(char *name, int age, char *address, char *rank);

-

~Faculty();

delegation - const char* getAddress() const;

const char *getRank() const;

const char* Gm private: ° U
getAddress() const{ ¥ " char *m rank:

return m_office.getAddress(); ; Office m_office;

} %




Final Solution (cont’d)

class Graduate: public Person {
public:
Graduate(char *name, int age, int stipend, char *address);
int getStipend() const;
const char* getAddress() const;
private: -
int m_stipend; 2 {
Office m_office; ' public:

}; - Faculty(char *name, int age, char *address, char *rank);
- ~Faculty();

delegation - const char* getAddress() const;
- const char *getRank() const;
const char* Graduate:: \_ private:

getAddress() const { \ char *m rank:
return m_office.getAddress(); ; Office m_office;

}

<~ Note: the data part m offlce In Graduate and Faculty is replicated.
However, the code to handle address is reduced to a single
copy, I.e. Office::getAddress(). If we want to maintain a single

object for the same office, we can use pointer or reference to

Implement m_office. 25-36
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other objects are common, we can model their relationships within

a parent class.
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Further Abstraction

<~ When the relationships between Graduate or Faculty objects and
other objects are common, we can model their relationships within

a parent class.

Person

L%

[
Undergraduate

class PersonnelWithOffice {
public:

PersonnelWithOffice

z}

Graduate

Faculty

const char *getAddress() const;

private:
Office m_office;

h

Note:

In the above class diagram, each
Graduate object or Faculty object
has an association with an Office
object




Further Abstraction

<~ When the relationships between Graduate or Faculty objects and
other objects are common, we can model their relationships within

a parent class.

Person

L%

[ |
Undergraduate PersonnelWithOffice

z}

[ I
Graduate Faculty

class PersonnelWithOffice {
public:
const char *getAddress() const; Note: in the above class diagram, each

private: " Graduate object or Faculty object
Office m_office; has an association with an Office

b object

< If there could be several offices for a certain personnel, the private
member could be a container, ex. vector<Office> m_offices;
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Design Rules for Inheritance

<~ Primary guide: Class A should only be derived from Class B if
Class A is a type of Class B

Person B Liskov substitution
* A student is a person f ISA f Principle (LSP)

Student A This def is formal

| but still abstract!!
* Inheritance is called an IS-A relatlonshlp Difficult to follow!

* What we mean by “is-a” In programmlng IS substitutability”.

* Eg. Can an object of type Student be used in whatever place of
ain UIJ_]CLI. UI lpr I"CIDUII’ I Illb Ib UCDLI IUCU III LCIIIID UI lIICIl
Interfaces (the promises and requirements), instead of their
Implementations. If yes, Student can inherit Person.

+ Inheritance should be “natural” Proper inheritance  Improper inheritance
Student Undergraduate

x The second case IS a bad inheritance

even if Undergraduate is internally % %
Identical to Student. Graduate Graduate
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Design Rules (cont’d)

<~ Common code and data between classes can be shared by creating
a base class (one of the two primary benefits we can get from

Inheritance) Person

m_age
m_name

N\

| N

Undergraduate Graduate Faculty
m_advisor m_office m_office | |
= m_stipend m_rank Gradu aculty

< Never violate the primary objectives for the sake«ﬁ:ode sharir@\

< Bad cases of inheritance (improper inheritances) are often cured
through composition (containment / aggregation)

Faculty This is referred to as the HAS-A relationship.
Office| | It operates in the form of delegation.
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Dubious Examples of Inheritance
< Taken from Deitel & Deitel, C: How to program, p. 736

class Point {
public:
Point(double x=0, double y=0); void Circle::display() {
protected: cout << "Center =" <<c.x<<", " <<cy
double x, y; << "]; Radius =" << radius;

};

class Circle: public Point {

public:
Circle(double x=0, double y=0, double radius=0);
void display() const;

private:
double radius;

};
< Design rationale: A circle Is a type of point, with common data. The
radius of a circle iIs zero or approaching zero. ... Purely mathematical!

< Critiques: A circle is not a point. Instead, a circle has a point
corresponding to its center. Substitutability: Can a circle be used
as a point in constructing the four corners of a rectangle?




Dubious Examples of Inheritance
< Taken from Deitel & Deitel, C: How to program, p. 736

class Point {
public:
Point(double x=0, double y=0); void Circle::display() {
protected: cout << "Center =" <<c.x<<", " <<cy
double x, y; << "]; Radius =" << radius;

};

class Circle: public Point {

public:
Circle(double x=0, double y=0, double radius=0);
void display() const;

private:
double radius;

};
< Design rationale: A point iIs a type of circle, with common data, when
the radius of a circle Is approaching zero. ... Purely mathematical!

< Critiques: A circle is not a point. Instead, a circle has a point
corresponding to its center. Substitutability: Can a circle be used
as a point in constructing the four corners of a rectangle? Can a
circle be used as the center of another circle?
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& This stack can then be operated as a linked list, the
mechanism of a stack would be completely broken.

& |f you try to turn off the insert()/delete() interface that could
manipulate entries in any order, you basically make the Stack
class different from the LinkList base class in terms of
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Some Other Dubious Examples

<+ EX 1: A stack derived from a linked list What are the problems?

& This stack can then be operated as a linked list, the
mechanism of a stack would be completely broken.

& |f you try to turn off the insert()/delete() interface that could
manipulate entries in any order, you basically make the Stack
class different from the LinkList base class in terms of
operations. Client codes break! A Stack IS-NOT a LinkList.

<+ Ex 2: A file pathname class derived from a string class

Nnto- athn o IC indoaad Nntad hyv/ 2 ctrin hiit 1t 1c n
||ULC (1 |J(1LIIII(1IIIC 1J |||UCCU ||||'J|C|||C||LCU Uy A DL"”U, MUl 1L Q Aa

special string that cannot be longer than 32 characters

< Design rule: The derived class extends the base class, not the other
way around. specialization

/ base class\ \ b\y(ass

/ derived class \ \de(( ved\lass/
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Points to Consider

To design a Shape inheritance hierarchy
What are the common operations you want to perform on all Shapes

What other kinds of Shapes might you use in your application?
(Triangle, Circle, Polygon, Ellipse, Square, Rectangle Rhombus,
Pentagon, ...) Circle-Ellipse Square-Rectangle

Why do you need a Rectangle class as the base class of a Square?

Can a Square substitute for a Rectangle?

A Rhombus is four-sided, like a Rectangle, so should Rectangle
derive from Rhombus?

Should you have a base class for all four-sided objects?
Should you have another base class for all five-sided objects?

Should you have a general base class for polygons with the number
of sides as an attribute?

Will your program perform geometric searches to identify objects?. ,,
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