|nheritance

C++ Object Oriented Programming
Pei-yih Ting
NTOUCS

Contents

< Basic Inheritance
* Why inheritance
* How inheritance works
x Protected members
x Constructors and destructors
x Derivation tree
* Function overriding and hiding
* Example class hierarchy

Contents

< Basic Inheritance
* Why inheritance
* How inheritance works
x Protected members
x Constructors and destructors
x Derivation tree
* Function overriding and hiding
* Example class hierarchy

< Inheritance Design

* Exploring different
Inheritance structure

* Direct solution to reuse code
* Alternative solutions

* Better design

* Final solutions

* Design rules (IS-A relationship,
Proper inheritance)

* Dubious designs

ODbject-Oriented Analysis

<~ An object-orientated design provides a more natural and systematic
framework for specifying and designing a programming solution.

ODbject-Oriented Analysis

<~ An object-orientated design provides a more natural and systematic
framework for specifying and designing a programming solution.

<+ Program designs are almost always based on the program

specification, i.e. a document describing the exact requirements a
program is expected to achieve.

ODbject-Oriented Analysis

<~ An object-orientated design provides a more natural and systematic
framework for specifying and designing a programming solution.

<+ Program designs are almost always based on the program
specification, i.e. a document describing the exact requirements a
program is expected to achieve.

< Four phases of the object-oriented analysis process:

ODbject-Oriented Analysis

<~ An object-orientated design provides a more natural and systematic
framework for specifying and designing a programming solution.

<+ Program designs are almost always based on the program
specification, i.e. a document describing the exact requirements a
program is expected to achieve.

< Four phases of the object-oriented analysis process:
The identification of objects from the program specification.

ODbject-Oriented Analysis

<~ An object-orientated design provides a more natural and systematic
framework for specifying and designing a programming solution.

<+ Program designs are almost always based on the program
specification, i.e. a document describing the exact requirements a
program is expected to achieve.

< Four phases of the object-oriented analysis process:
The identification of objects from the program specification.
The identification of the attributes and behaviours of these objects.

ODbject-Oriented Analysis

<~ An object-orientated design provides a more natural and systematic
framework for specifying and designing a programming solution.

<+ Program designs are almost always based on the program
specification, i.e. a document describing the exact requirements a
program is expected to achieve.

< Four phases of the object-oriented analysis process:
The identification of objects from the program specification.

The identification of the attributes and behaviours of these objects.
The identification of any super-classes.

ODbject-Oriented Analysis

An object-orientated design provides a more natural and systematic
framework for specifying and designing a programming solution.

Program designs are almost always based on the program
specification, i.e. a document describing the exact requirements a
program is expected to achieve.

Four phases of the object-oriented analysis process:
The identification of objects from the program specification.
The identification of the attributes and behaviours of these objects.
The identification of any super-classes.
The specification of the behaviours of the identified classes.

Inheritance

< The distinction between an "object-based language" and an "object-
oriented language" is the ability to support inheritance (or derivation).

Inheritance

< The distinction between an "object-based language" and an "object-
oriented language" is the ability to support inheritance (or derivation).

<~ Composition/aggregation and inheritance are the most important two
ways to construct object hierarchies.

Inheritance

< The distinction between an "object-based language" and an "object-
oriented language" is the ability to support inheritance (or derivation).

<~ Composition/aggregation and inheritance are the most important two
ways to construct object hierarchies.

+ In the OOA process, after objects are identified from the problem
domain and attributes and behaviors are modeled with classes in the

analysis process, the next important phase is the identification of
super-classes in the problem domain

Inheritance

The distinction between an "object-based language" and an "object-
oriented language" is the ability to support inheritance (or derivation).

Composition/aggregation and inheritance are the most important two
ways to construct object hierarchies.

In the OOA process, after objects are identified from the problem
domain and attributes and behaviors are modeled with classes in the

analysis process, the next important phase is the identification of
super-classes in the problem domain

In the language level, a super-class defines the attributes and
behaviors that are common to all its sub-classes.

Inheritance

The distinction between an "object-based language" and an "object-
oriented language" is the ability to support inheritance (or derivation).

Composition/aggregation and inheritance are the most important two
ways to construct object hierarchies.

In the OOA process, after objects are identified from the problem
domain and attributes and behaviors are modeled with classes in the

analysis process, the next important phase is the identification of
super-classes in the problem domain

In the language level, a super-class defines the attributes and
behaviors that are common to all its sub-classes.

Base class Derived class

Inheritance

The distinction between an "object-based language" and an "object-
oriented language" is the ability to support inheritance (or derivation).

Composition/aggregation and inheritance are the most important two
ways to construct object hierarchies.

In the OOA process, after objects are identified from the problem
domain and attributes and behaviors are modeled with classes in the

analysis process, the next important phase is the identification of
super-classes in the problem domain

In the language level, a super-class defines the attributes and
behaviors that are common to all its sub-classes.

Base class Derived class
Super-class : Sub-class

Inheritance

The distinction between an "object-based language" and an "object-
oriented language" is the ability to support inheritance (or derivation).

Composition/aggregation and inheritance are the most important two
ways to construct object hierarchies.

In the OOA process, after objects are identified from the problem
domain and attributes and behaviors are modeled with classes in the

analysis process, the next important phase is the identification of
super-classes in the problem domain

In the language level, a super-class defines the attributes and
behaviors that are common to all its sub-classes.

Base class Derived class
Super-class : Sub-class
Parent class Child class

Basic Inheritance

The Basic Problem: Extension

< Imagine you have a class for describing students

The Basic Problem: Extension

< Imagine you have a class for describing students

class Student {
public:
Student();
~Student();
void setData(char *name, int age);
Int getAge() const;

const char *getName() const;
private:

char *m_name,;

Int m_age;

}

The Basic Problem: Extension

< Imagine you have a class for describing students

class Student {
public:
Student();
~Student();
void setData(char *name, int age);
Int getAge() const;
const char *getName() const;
private:
char *m_name,;
Int m_age;

}

<+ Want to add fields to handle the requirements for graduate students

25-6

The Basic Problem: Extension

< Imagine you have a class for describing students

class Student { class Student {

public: public:
Student(); Student();
~Student(); ~S_tclljde$oé o -
void setData(char *name, int age); void setData(char “name, int age,

_ Int stipend);
int getAge() const; int getAge() const;

const char *getName() const; const char *getName() const;
private: Int getStipend() const;

char *m_name; private:

int m_age; char *m_name;
1; int m_age;
Int m_stipend;

};
<+ Want to add fields to handle the requirements for graduate students

25-6

The Basic Problem: Extension

< Imagine you have a class for describing students

class Student { class Student {

public: public:
Student(); Student();
~Student(); ~Student();

: : void setData(char *name, int age,
void setData(char *name, int age);

_ Int stipend);
int getAge() const; int getAge() const;

const char *getName() const; const char *getName() const;
private: int getStipend() const;

char *m_name; private:

int m_age; char *m_name;
1; int m_age;
int m_stipend,;

&

<+ Want to add fields to handle the requirements for graduate students
What is the problem of this design?

25-6

Not Good!

Not Good!

< In the above design

* Student becomes a general purpose class, a set of attributes and
Interfaces are used for undergraduate students, while another set
of attributes and interfaces are used for graduate students
... a form with many redundant fields

Not Good!

< In the above design

* Student becomes a general purpose class, a set of attributes and
Interfaces are used for undergraduate students, while another set
of attributes and interfaces are used for graduate students
... a form with many redundant fields

* In the process of this change, all previously developed programs,
Including those implementations of the Student class and those
codes that are the client programs of the Student class, have to
be recompiled.... This change is global, not limited to the part
you plan to add.

Not Good!

< In the above design

* Student becomes a general purpose class, a set of attributes and
Interfaces are used for undergraduate students, while another set
of attributes and interfaces are used for graduate students
... a form with many redundant fields

* In the process of this change, all previously developed programs,
Including those implementations of the Student class and those
codes that are the client programs of the Student class, have to
be recompiled.... This change is global, not limited to the part
you plan to add.

OCP: open-closed principle

Not Good!

< In the above design

* Student becomes a general purpose class, a set of attributes and
Interfaces are used for undergraduate students, while another set
of attributes and interfaces are used for graduate students
... a form with many redundant fields

* In the process of this change, all previously developed programs,
Including those implementations of the Student class and those
codes that are the client programs of the Student class, have to
be recompiled.... This change is global, not limited to the part
you plan to add.

OCP: open-closed principle

Software entities (classes, modules, functions, etc.)

should be open for extension, but closed for modification.
25-7

A Solution — Separate Classes

< No redundant members, old codes
for Student need only change the
name to UnderGraduate.

A Solution — Separate Classes

< No redundant members, old codes
for Student need only change the
name to UnderGraduate.

class Undergraduate {
public:
Undergraduate();
~Undergraduate();

void setData(char *name, int age);
Int getAge() const;
const char *getName() const;
private:
char *m_name,
Int m_age;

I

A Solution — Separate Classes

< No redundant members, old codes | class Graduate {

for Student need only change the | public:

Graduate();
name to UnderGraduate. ~Graduate():

class Undergraduate { void setData(char *name,

public: Int age, int stipend);
Undergraduate(); int getAge() const;
~Undergraduate(); const char *getName() const;

void setData(char *name, int age); int getStipend() const;
int getAge() const; private:
const char *getName() const; char *m_name;
private: Int m_age;
char *m_name; Int m_stipend,;
int m_age; };

I

A Solution — Separate Classes

< No redundant members, old codes | class Graduate {

for Student need only change the pugliCid -
raduatel(),
name to UnderGraduate. ~Graduate():

class Undergraduate { void setData(char *name,
public: Int age, int stipend);
Undergraduate(); int getAge() const;
~Undergraduate(); const char *getName() const;
void setData(char *name, int age); int getStipend() const;
int getAge() const; private:
const char *getName() const; char *m_name;
private: Int m_age;
char *m_name; int m_stipend,;
int m_age; };
b Why is this still a poor solution?

A Solution — Separate Classes

< No redundant members, old codes
for Student need only change the
name to UnderGraduate.

class Undergraduate {
public:
Undergraduate();
~Undergraduate();
void setData(char *name, int age);
Int getAge() const;
const char *getName() const;
private:
char *m_name,
Int m_age;

class Graduate {
public:
Graduate();
~Graduate();
void setData(char *name,
Int age, int stipend);
int getAge() const;
const char *getName() const;
int getStipend() const;
private:
char *m_name;
iInt m_age;
int m_stipend,;

}.

h Why is this still a poor solution?
< A client program cannot treat both classes of objects in a uniform way,
eXx. The library circulation system wants to check which students are
holding books overdue, it has to handle undergraduate and graduate
students with separate pieces of codes. 25-8

A Solution — Separate Classes

< No redundant members, old codes
for Student need only change the
name to UnderGraduate.

class Undergraduate {
public:
Undergraduate();
~Undergraduate();
void setData(char *name, int age);
Int getAge() const;
const char *getName() const;
private:
char *m_name,
Int m_age;

class Graduate {
public:
Graduate();
~Graduate();
void setData(char *name,
Int age, int stipend);
int getAge() const;
const char *getName() const;
int getStipend() const;
private:
char *m_name;
iInt m_age;
int m_stipend,;

}.

b Why is this still a,poor solution?

< A client program cannot treat both classes of objects in a uniform way,
eXx. The library circulation system wants to check which students are
holding books overdue, it has to handle undergraduate and graduate
students with separate pieces of codes. <Also, a lot of redundancy. 24

Basic Inheritance in C++

<+ Declare a class Graduate that is derived from Student

Basic Inheritance in C++

<+ Declare a class Graduate that is derived from Student

class Graduate: public Student {
public:
Graduate(char *name, int age, int stipend);
int getStipend() const;
private:
int m_stipend;

%

Basic Inheritance in C++

<+ Declare a class Graduate that is derived from Student

class Graduate: public Student {
public:
Graduate(char *name, int age, int stipend);

int getStipend() const;
private: =

int m_stipend;

%

-new member functions

Basic Inheritance in C++

<+ Declare a class Graduate that is derived from Student

class Graduate: public Student {
public:
Graduate(char *name, int age, int stipend);

int getStipend() const;
private: =

int m_stipend;
It 2

-new member functions

-new data member

Basic Inheritance in C++

<+ Declare a class Graduate that is derived from Student

class Graduate: public Student { Student is called the base

public: : e class, Graduate is called
Graduate(char *name, int age, int stipend); the derived class

int getStipend() const;
private: | =
int m_stipend;
It e

-new member functions

-new data member

Basic Inheritance in C++

<+ Declare a class Graduate that is derived from Student

class Graduate: public Student { Student is called the base
public: : o class, Graduate is called
Graduate(char *name, int age, int stipend); the derived class
int getStipend() const; —~
pr!v?te: ioand -new member functions
int m_stipend;
h =

-new data member

< All the data members (m_name and m_age) and most the member
functions (setData(), getAge(), getName()) of class Student are
automatically inherited by the Graduate class

Basic Inheritance in C++

<+ Declare a class Graduate that is derived from Student

class Graduate: public Student {

public:
Graduate(chgz)*name, Int age, int stipend);
int getStipend() const;

private: | =
int m_stipend;

Jit 2

Student is called the base
class, Graduate is called
the derived class

-new member functions

-new data member

< All the data members (m_name and m_age) and most the member

functions (setData(), getAge(), getName()) of class Student are
automatically inherited by the Graduate class

&~ New member functions

Basic Inheritance in C++

<+ Declare a class Graduate that is derived from Student

class Graduate: public Student {

public:
Graduate(chgz)*name, Int age, int stipend);
int getStipend() const;

private: | =
int m_stipend;

Jit 2

Student is called the base
class, Graduate is called
the derived class

-new member functions

-new data member

All the data members (m_name and m_age) and most the member

functions (setData(), getAge(), getName()) of class Student are
automatically inherited by the Graduate class

New member functions

Graduate::Graduate(char *name, int age, int stipend) : m_stipend(stipend) {
setData(name, age); // this is inherited from Student

}

Basic Inheritance in C++

<+ Declare a class Graduate that is derived from Student

class Graduate: public Student {

public:
Graduate(chgz)*name, Int age, int stipend);
int getStipend() const;

private: | =
int m_stipend;

Jit 2

Student is called the base
class, Graduate is called
the derived class

-new member functions

-new data member

All the data members (m_name and m_age) and most the member

functions (setData(), getAge(), getName()) of class Student are
automatically inherited by the Graduate class

New member functions

Graduate::Graduate(char *name, int age, int stipend) : m_stipend(stipend) {
setData(name, age); // this is inherited from Student

}

int Graduate::getStipend() const {
return m_stipend;

}

Basic Inheritance (cont’d)

< Usages:

Basic Inheritance (cont’d)

< Usages:

Student student;
student.setData(*'Mel"", 19);
Graduate gradStudent("'Ron", 24, 3000);

Basic Inheritance (cont’d)

< Usages:

Student student;
student.setData(*'Mel"", 19);
Graduate gradStudent("'Ron", 24, 3000);

» . Student
ctor(), dtor() | m_name = "Mel"
SetData() m_age = 19
getAge()
getName()

< Usages:

Student student;
student.setData(*'Mel"", 19);
Graduate gradStudent("'Ron", 24, 3000);

o : Student

ctor(), dtor()
setData()

getAge()
getName()

m_name = "Mel"
m_age = 19

Basic Inheritance (cont’d)

ctor(), dtor()
getStipend()

*: Graduate
., - Student

setData()

not A naol)
yLuyi

getName()

" m_name = "Ron" !

m_stipend = 3000

< Usages:

Student student;
student.setData(*'Mel"", 19);
Graduate gradStudent("'Ron", 24, 3000);

o : Student

ctor(), dtor()
setData()

getAge()
getName()

m_name = "Mel"
m_age = 19

Basic Inheritance (cont’d)

ctor(), dtor()
getStipend()

*: Graduate
., - Student

setData()

not A naol)
yLuyi

getName()

" m_name = "Ron" !

m_stipend = 3000

cout << student.getName() << " is "" << student.getAge()
<< " years old undergraduate student\n"*;

< Usages:

Student student;
student.setData(*'Mel"", 19);
Graduate gradStudent("'Ron", 24, 3000);

o : Student

ctor(), dtor()
setData()

getAge()
getName()

m_name = "Mel"
m_age = 19

Basic Inheritance (cont’d)

ctor(), dtor()
getStipend()

*: Graduate
., - Student

setData()

not A naol)
yLuyi

getName()

" m_name = "Ron" !

m_stipend = 3000

cout << student.getName() << " is "" << student.getAge()
<< " years old undergraduate student\n"*;

cout << gradStudent.getName() << " is "' << gradStudent.getAge()

<< " years old and has a stipend of ** << gradStudent.getStipend()
<< " dollars.\n"";

Basic Inheritance (cont’d)

Note: A Graduate object IS a Student object because
& Usages: a Graduate object provides the complete set of
Interface functions of a Student object, i.e.,
Student student; they looks the same from the outside.

student.setData("'Mel"", 19);
Graduate gradStudent("'Ron", 24, 3000);

« - Student ctor(), dtor()| " : Graduate

CtOr(), dtor() m_name = "Mel" getStIpend() L Student
setData() m_age = 19 *m_name = "Ron" !
getAge() setData() - ;
getName() getAge() |-+ '
getName() | m_stipend =3000

cout << student.getName() << " is "" << student.getAge()
<< " years old undergraduate student\n"*;

cout << gradStudent.getName() << " is "' << gradStudent.getAge()

<< " years old and has a stipend of ** << gradStudent.getStipend()
<< " dollars.\n"";

< Usages:

Student student;

Basic Inheritance (cont’d)

Note: A Graduate object IS a Student object because
a Graduate object provides the complete set of
Interface functions of a Student object, i.e.,

student.setData("'Mel"", 19);
Graduate gradStudent("'Ron", 24, 3000);

ctor(), dtor()
setData()

getAge()
getName()

e : Student
m_name = "Mel"
m_age = 19

they looks the same from the outside. Student |

T

Graduate |

ctor(), dtor()
getStipend()

*: Graduate
., - Student

setData()

not A naol)
yLuyi

getName()

" m_name = "Ron" !

m_stipend = 3000

cout << student.getName() << " is "" << student.getAge()
<< " years old undergraduate student\n"*;

cout << gradStudent.getName() << " is "' << gradStudent.getAge()

<< " years old and has a stipend of ** << gradStudent.getStipend()
<< " dollars.\n"";

Basic Inheritance (cont’d)

< This would be illegal

int Graduate::getStipend() const {
if (m_age > 30)
return O;
return m_stipend;

}

Basic Inheritance (cont’d)

< This would be illegal

int Graduate::getStipend() const {
if (m_age > 30)
return O;
return m_stipend;

}
< Private data member of the base class is implicitly declared/defined

but Is still kept private from its derived class. (the boundary of base
class Is maintained)

Basic Inheritance (cont’d)

< This would be illegal

int Graduate::getStipend() const {
if (m_age > 30)
return O;
return m_stipend;

}
< Private data member of the base class is implicitly declared/defined

but Is still kept private from its derived class. (the boundary of base
class Is maintained)

< This is legal
int Graduate::getStipend() const {
if (getAge() > 30)
return O;
return m_stipend;

}

Basic Inheritance (cont’d)

< This would be illegal

int Graduate::getStipend() const {
if (m_age > 30)
return O;
return m_stipend;

}

< Private data member of the base class is implicitly declared/defined
but Is still kept private from its derived class. (the boundary of base
class Is maintained)

< This is legal
int Graduate::getStipend() const {
if (getAge() > 30)
return O;
return m_stipend;

}

<+ Back to OCP:

Basic Inheritance (cont’d)

< This would be illegal

int Graduate::getStipend() const {
if (m_age > 30)
return O;
return m_stipend;

}

< Private data member of the base class is implicitly declared/defined
but Is still kept private from its derived class. (the boundary of base
class Is maintained)

< This is legal
int Graduate::getStipend() const {
if (getAge() > 30)
return O;
return m_stipend;

}

<~ Back to OCP: Did you extend the functionality of the class Student?

25-11

Basic Inheritance (cont’d)

< This would be illegal

int Graduate::getStipend() const {
if (m_age > 30)
return O;
return m_stipend;

}

< Private data member of the base class is implicitly declared/defined
but Is still kept private from its derived class. (the boundary of base
class Is maintained)

< This is legal
int Graduate::getStipend() const {
if (getAge() > 30)
return O;
return m_stipend;

}

<~ Back to OCP: Did you extend the functionality of the class Student?
Did you edit student.h or student.cpp?

25-11

Protected Data and Functions

< Can we give the derived class access to "private" data of base class?

Protected Data and Functions

< Can we give the derived class access to "private" data of base class?

class Student {
public:
Student();
~Student();
void setData(char *name, int
age);
Int getAge() const;
const char *getName() const;

protected:
char *m_name,;
Int m_age;

%

Protected Data and Functions

< Can we give the derived class access to "private" data of base class?

class Student {
public:
Student();

~S_tudent(); :
void setData(char *name, int < The following is now legal

age);
Int getAge() const; Int Graduate::getStipend() const {

const char *getName() const; If (m_age > 30)
return O;

protected: :
char *m__n_a_m_e; } return m_stlpend;

Int m_age;

%

Protected Data and Functions

< Can we give the derived class access to "private" data of base class?

class Student {
public:
Student();

~S_tudent(); :
void setData(char *name, int < The following is now legal

age);
Int getAge() const; Int Graduate::getStipend() const {

const char *getName() const; If (m_age > 30)
return O;

protected: :
char *m__n_a_m_e; } return m_stlpend;

Int m_age;

It
< Who can access protected fields?

Protected Data and Functions

< Can we give the derived class access to "private" data of base class?

class Student {
public:
Student();

~S_tudent(); :
void setData(char *name, int < The following is now legal

age);
Int getAge() const; Int Graduate::getStipend() const {

const char *getName() const; If (m_age > 30)
return O;

protected: :
char *m__n_a_m_e; } return m_stlpend;

Int m_age;
}
< Who can access protected fields?
x base class and friends of base class

Protected Data and Functions

< Can we give the derived class access to "private" data of base class?

class Student {
public:
Student();

~S_tudent(); :
void setData(char *name, int < The following is now legal

age);
Int getAge() const; Int Graduate::getStipend() const {

const char *getName() const; If (m_age > 30)
return O;

protected: :
char *m__n_a_m_e; } return m_stlpend;

Int m_age;

It
< Who can access protected fields?

* pase class and friends of base class

x derived class and friends of derived
classes

Protected Data and Functions

< Can we give the derived class access to "private" data of base class?

class Student {

public:
Student();
~Student();

;’85’_ setData(char *name, int < The following is now legal
Int detAge() const; Int Graduate::getStipend() const {

const char *getName() const; If (m_age > 30)

protected: return 0;
char *m_name,;) return m_stipend;

Int m_age;

%

Note: the encapsulation

< Who can access protected fields? perimeter Is enlarged

: a great deal with
* base class and friends of base class "protected” in your

* derived class and friends of derived design
classes

Basic Inheritance (cont’d)

< Most of the member functions of the base class are implicitly
Inherited by the derived class except

Basic Inheritance (cont’d)

< Most of the member functions of the base class are implicitly
Inherited by the derived class except

x The constructor (including copy ctor)

Basic Inheritance (cont’d)

< Most of the member functions of the base class are implicitly
Inherited by the derived class except

x The constructor (including copy ctor)
* The assignment operator

Basic Inheritance (cont’d)

< Most of the member functions of the base class are implicitly
Inherited by the derived class except

x The constructor (including copy ctor)
* The assignment operator
* The destructor

Basic Inheritance (cont’d)

< Most of the member functions of the base class are implicitly
Inherited by the derived class except

x The constructor (including copy ctor)
* The assignment operator
* The destructor

< They are synthesized by the complier again if not explicitly defined.
The synthesized ctor, dtor, and assignment operator would chain
automatically to the function defined in the base class.

Inheritance and Constructors

<~ Rewrite Student using constructor

Inheritance and Constructors

<~ Rewrite Student using constructor

class Student {
public:
Student(char *name, int age);
~Student();
void setData(char *name, int age);
int getAge() const;
const char *getName() const;
private:
char *m_name;

int m_age;

%

Inheritance and Constructors

<~ Rewrite Student using constructor

class Student {
public:
Student(char *name, int age);
~Student();
void setData(char *name, int age);
int getAge() const;
const char *getName() const;
private:
char *m_name;

int m_age;

%

< In this case, the constructor for Graduate fails

Inheritance and Constructors

<~ Rewrite Student using constructor

class Student {
public:
Student(char *name, int age);
~Student();
void setData(char *name, int age);
int getAge() const;
const char *getName() const;
private:
char *m_name;

int m_age;

%

< In this case, the constructor for Graduate fails

Graduate::Graduate(char *name, int age, int stipend) : m_stipend(stipend) {
setData(name, age); // this is inherited from Student

}

Inheritance and Constructors

<~ Rewrite Student using constructor

class Student {
public:
Student(char *name, int age);
~Student();
void setData(char *name, int age);
int getAge() const;
const char *getName() const;
private:
char *m_name;

int m_age;

%

< In this case, the constructor for Graduate fails

Graduate::Graduate(char *name, int age, int stipend) : m_stipend(stipend) {
\ setData(name, age); // this is inherited from Student

error C2512: 'Student' : no appropriate default constructor available

Inheritance and Constructors

<~ Rewrite Student using constructor

class Student {
public:
Student(char *name, int age);
~Student();
void setData(char *name, int age);
int getAge() const;
const char *getName() const;
private:
char *m_name;

int m_age;

%

< In this case, the constructor for Graduate fails

Graduate::Graduate(char *name, int age, int stipend) : m_stipend(stipend) {
\ setData(name, age); // this is inherited from Student

< Why??

error C2512: 'Student' : no appropriate default constructor available

Inheritance and Constructors

<~ Rewrite Student using constructor

class Student {
public:
Student(char *name, int age);
~Student();
void setData(char *name, int age);
int getAge() const;
const char *getName() const;
private:
char *m_name;

int m_age;

%

< In this case, the constructor for Graduate fails

Graduate::Graduate(char *name, int age, int stipend) : m_stipend(stipend) {
\ setData(name, age); // this is inherited from Student

< Why??

Graduate::Graduate(char *name, int age, int stipend)

: Student(), m_stipend(stipend) {
setData(name, age); // this is inherited from Student

}

error C2512: 'Student' : no appropriate default constructor available

Inheritance and Constructors

<~ Rewrite Student using constructor

class Student {
public:
Student(char *name, int age);
~Student();
void setData(char *name, int age);
int getAge() const;
const char *getName() const;
private:
char *m_name;

int m_age;

%

< In this case, the constructor for Graduate fails

Graduate::Graduate(char *name, int age, int stipend) : m_stipend(stipend) {
\ setData(name, age); // this is inherited from Student

< Why??

Graduate::Graduate(char *name, int age, int stipend)
: Student(), m_stipend(stipend) {

setData(name, age); // this is inherited from Student
} Compiler insert this automatically

error C2512: 'Student' : no appropriate default constructor available

25-14

Inheritance and Constructors

<~ Rewrite Student using constructor

class Student {
public:
Student(char *name, int age);
~Student();
void setData(char *name, int age);
int getAge() const;
const char *getName() const;
private:
char *m_name;
int m_age;

};
< In this case, the constructor for Graduate fails

Graduate::Graduate(char *name, int age, int stipend) : m_stipend(stipend) {
\ setData(name, age); // this is inherited from Student

< Why??

error C2512: 'Student' : no appropriate default constructor available

Graduate::Graduate(char *name, int age, int stipend) chaining
: Student(), m_stipend(stipend) {

setData(name, age); // this is inherited from Student
} Compiler insert this automatically

25-14

Inheritance and Ctors (cont’d)

< In this case, the correct form of the constructor for Graduate Is

Inheritance and Ctors (cont’d)

< In this case, the correct form of the constructor for Graduate Is

Graduate::Graduate(char *name, int age, int stipend)

: Student(name, age), m_stipend(stipend) {
setData(name, age); // setData() is inherited from Student

}

Inheritance and Ctors (cont’d)

< In this case, the correct form of the constructor for Graduate Is

Graduate::Graduate(char *name, int age, int stipend)

; Studenténame, age), m_stipend(stipend) {
—age); // setData() is inherited from Student

}

Inheritance and Ctors (cont’d)

< In this case, the correct form of the constructor for Graduate Is

Graduate::Graduate(char *name, int age, int stipend)

Studenténame age), m_stipend(stipend) {
); /] setData() is inherited from Student

}

Student::Student(char *name, int age) : m_age(age) {
m_name = new char[strlen(name)+1]
strcpy(m_name, name);

Inheritance and Ctors (cont’d)

< In this case, the correct form of the constructor for Graduate Is

Graduate::Graduate(char *name, int age, int stipend)

Studenténame age), m_stipend(stipend) {
j); /] setData() is inherited from Student

Student::Student(char *name, int age) : m_age(age) {
m_name = new char[strlen(name)+1]
strcpy(m_name, name);

< You cannot initialize base class members directly in the initialization
list even if they are public or protected, i.e.

Inheritance and Ctors (cont’d)

< In this case, the correct form of the constructor for Graduate Is

Graduate::Graduate(char *name, int age, int stipend)

Studenténame age), m_stipend(stipend) {
j); /] setData() is inherited from Student

Student::Student(char *name, int age) : m_age(age) {
m_name = new char[strlen(name)+1]
strcpy(m_name, name);

< You cannot initialize base class members directly in the initialization
list even if they are public or protected, i.e.

Graduate::Graduate(char *name, int age, int stipend)
: m_age(age), m_stipend(stipend)

Inheritance and Ctors (cont’d)

< In this case, the correct form of the constructor for Graduate Is

Graduate::Graduate(char *name, int age, int stipend)

Studenténame age), m_stipend(stipend) {
j); /] setData() is inherited from Student

Student::Student(char *name, int age) : m_age(age) {
m_name = new char[strlen(name)+1]
strcpy(m_name, name);

< You cannot initialize base class members directly in the initialization
list even if they are public or protected, i.e.

Graduate::Graduate(char *name, int age, int stipend)
: m_age(age), m_stipend(stipend)

error C2614: '‘Graduate’ : illegal member initialization: 'm_age' is not a base
or member

Inheritance and Ctors (cont’d)

< In this case, the correct form of the constructor for Graduate Is

Graduate::Graduate(char *name, int age, int stipend)

Studenténame age), m_stipend(stipend) {
j); /] setData() is inherited from Student

Student::Student(char *name, int age) : m_age(age) {
m_name = new char[strlen(name)+1]
strcpy(m_name, name);

< You cannot initialize base class members directly in the initialization
list even if they are public or protected, i.e.

Graduate::Graduate(char *name, int age, int stipend)
: m_age(age), m_stipend(stipend)

error C2614: '‘Graduate’ : illegal member initialization: 'm_age' is not a base
or member

< Base class guarantee

The base class will be fully constructed before the body of the
derived class constructor Is entered

Copy Constructor

<~ Copy constructor is also a constructor. Member objects and base
class must be initialized through initialization list

Copy Constructor

<~ Copy constructor is also a constructor. Member objects and base
class must be initialized through initialization list

< For example:

Copy Constructor

<~ Copy constructor is also a constructor. Member objects and base
class must be initialized through initialization list

< For example:

class Derived: public Base {
public:

Derived(Derived &src);

private:
Component m_obj;

}

Copy Constructor

<~ Copy constructor is also a constructor. Member objects and base
class must be initialized through initialization list

< For example:

class Derived: public Base {
public:

Derived(Derived &src);

private:
Component m_obj;

};
Derived::Derived(Derived &src): Base(src), m_obj(src.m_obj) {

}

Copy Constructor

<~ Copy constructor is also a constructor. Member objects and base
class must be initialized through initialization list

< For example:

class Derived: public Base {
public:

Derived(Derived &src);

private:
Component m_obj;

};
Derived::Derived(Derived &src): Base(src), m_obj(src.m_obj) {

} If you do not define a copy ctor, the compiler
would generate one exactly like this.

Copy Constructor

<~ Copy constructor is also a constructor. Member objects and base
class must be initialized through initialization list

< For example:

class Derived: public Base {

ublic:
5 Note:

Derived::Derived(Derived &src):

Derived(Derived &src); m_obj(src.m_obj)
{

private:
Component m_obj; }
};
Derived::Derived(Derived &src): Base(src), m_obj(src.m_obj) {

} If you do not define a copy ctor, the compiler
would generate one exactly like this.

Copy Constructor

<~ Copy constructor is also a constructor. Member objects and base
class must be initialized through initialization list

+ For example: Compiler adds Base() invocation
class Derived: public Base { automatically

ublic: ‘
P <. Note:

~~. Derived::Derived(Derived &src):

Derived(Derived &src); i - obj(src.m_obj)
{

private:
Component m_obj; }
};
Derived::Derived(Derived &src): Base(src), m_obj(src.m_obj) {

} If you do not define a copy ctor, the compiler
would generate one exactly like this.

Inheritance and Destructors

< If we add a dynamically allocated string data member to Graduate to
store the student's home address, then Graduate requires a destructor

Inheritance and Destructors

If we add a dynamically allocated string data member to Graduate to
store the student's home address, then Graduate requires a destructor

Student::Student(char *name, int age) : m_age(age) {
m_name = new char[strlen(name)+1];
strcpy(m_name, name);
cout << "'In Student ctor\n'';

}

Inheritance and Destructors

If we add a dynamically allocated string data member to Graduate to
store the student's home address, then Graduate requires a destructor
Student::Student(char *name, int age) : m_age(age) {

m_name = new char[strlen(name)+1];

strcpy(m_name, name); Student::~Student() {
cout << "'In Student ctor\n""; delete[] m_name;

} cout << "'In Student dtor\n"":

}

Inheritance and Destructors

If we add a dynamically allocated string data member to Graduate to
store the student's home address, then Graduate requires a destructor
Student::Student(char *name, int age) : m_age(age) {

m_name = new char[strlen(name)+1];

strcpy(m_name, name); Student::~Student() {
cout << "'In Student ctor\n""; delete[] m_name;

} cout << "'In Student dtor\n"":

}

Graduate::Graduate(char *name, int age, int stipend, char *address)
: Student(name, age), m_stipend(stipend) {
m_address = new char|[strlen(address)+1];
strcpy(m_address, address);
cout << "'In Graduate ctor\n';

}

Inheritance and Destructors

If we add a dynamically allocated string data member to Graduate to
store the student's home address, then Graduate requires a destructor
Student::Student(char *name, int age) : m_age(age) {

m_name = new char[strlen(name)+1];

strcpy(m_name, name); Student::~Student() {
cout << "'In Student ctor\n""; delete[] m_name;

} cout << "'In Student dtor\n"":

}

Graduate::Graduate(char *name, int age, int stipend, char *address)
: Student(name, age), m_stipend(stipend) {
m_address = new char|[strlen(address)+1];
strcpy(m_address, address);

cout << "'In Graduate ctor\n"’; Graduate::~Graduate() {

} delete[] m_address;
cout << "'In Graduate dtor\n"";

} 25-17

Inheritance and Dtors (cont’d)

< What happens in main()

Inheritance and Dtors (cont’d)

< What happens in main()

void main() {
Graduate student(**"Michael'", 24, 6000, "* 8899 Storkes Rd."");
cout << student.getName() << " is " << student.getAge() << "" years old and "'
<< "has a stipend of "' <, student.getStipend() << "dollars.\n""
<< "His address is " << student.getAddress() << ""\n"";

Inheritance and Dtors (cont’d)

< What happens in main()

void main() {
Graduate student(**"Michael'", 24, 6000, "* 8899 Storkes Rd."");
cout << student.getName() << " is " << student.getAge() << "" years old and "'
<< "has a stipend of "' <, student.getStipend() << "dollars.\n""
<< "His address is " << student.getAddress() << ""\n"";

}
The output is:

Inheritance and Dtors (cont’d)

< What happens in main()

void main() {
Graduate student(**"Michael'", 24, 6000, "* 8899 Storkes Rd."");
cout << student.getName() << " is " << student.getAge() << "" years old and "'
<< "has a stipend of "' <, student.getStipend() << "dollars.\n""
<< "His address is " << student.getAddress() << ""\n"";

}
The output is:

In Student ctor

Inheritance and Dtors (cont’d)
< What happens in main()

void main() {

Graduate student(**"Michael'", 24, 6000, "* 8899 Storkes Rd."");

cout << student.getName() << " is " << student.getAge() << " years old and "'
<< "has a stipend of "' <, student.getStipend() << "dollars.\n""
<< "His address is " << student.getAddress() << ""\n"";

}

The output is:

In Student ctor
In Graduate ctor

Inheritance and Dtors (cont’d)
< What happens in main()

void main() {

Graduate student(**"Michael'", 24, 6000, "* 8899 Storkes Rd."");

cout << student.getName() << " is " << student.getAge() << " years old and "'
<< "has a stipend of "' <, student.getStipend() << "dollars.\n""
<< "His address is " << student.getAddress() << ""\n"";

}

The output is:

In Student ctor
In Graduate ctor

Michael is 24 years old and has a stipend of 6000 dollars.

Inheritance and Dtors (cont’d)
< What happens in main()

void main() {

Graduate student(**"Michael'", 24, 6000, "* 8899 Storkes Rd."");

cout << student.getName() << " is " << student.getAge() << "" years old and "'
<< "has a stipend of "' <, student.getStipend() << "dollars.\n""
<< "His address is " << student.getAddress() << ""\n"";

}

The output is:
In Student ctor
In Graduate ctor

Michael is 24 years old and has a stipend of 6000 dollars.
His address is 8899 Storkes Rd.

Inheritance and Dtors (cont’d)
< What happens in main()

void main() {

Graduate student(**"Michael'", 24, 6000, "* 8899 Storkes Rd."");

cout << student.getName() << " is " << student.getAge() << "" years old and "'
<< "has a stipend of "' <, student.getStipend() << "dollars.\n""
<< "His address is " << student.getAddress() << ""\n"";

}

The output is:

In Student ctor
In Graduate ctor
Michael is 24 years old and has a stipend of 6000 dollars.

His address is 8899 Storkes Rd.
In Graduate dtor

Inheritance and Dtors (cont’d)

< What happens in main()

void main() {

Graduate student(**"Michael'", 24, 6000, "* 8899 Storkes Rd."");

cout << student.getName() << " is " << student.getAge() << "" years old and "'
<< "has a stipend of "' <, student.getStipend() << "dollars.\n""
<< "His address is " << student.getAddress() << ""\n"";

}

The output is:

In Student ctor

In Graduate ctor

Michael is 24 years old and has a stipend of 6000 dollars.
His address is 8899 Storkes Rd. .
In Graduate dtor chaining
In Student dtor

Inheritance and Dtors (cont’d)

< What happens in main()

void main() {

Graduate student(**"Michael'", 24, 6000, "* 8899 Storkes Rd."");

cout << student.getName() << " is " << student.getAge() << "" years old and "'
<< "has a stipend of "' <, student.getStipend() << "dollars.\n""
<< "His address is " << student.getAddress() << ""\n"";

}

The output is:

In Student ctor

In Graduate ctor

Michael is 24 years old and has a stipend of 6000 dollars.
His address is 8899 Storkes Rd. .
In Graduate dtor chaining
In Student dtor

< The compiler automatically calls each dtor when the object dies.

Inheritance and Dtors (cont’d)

< What happens in main()

void main() {

Graduate student(**"Michael'", 24, 6000, "* 8899 Storkes Rd."");

cout << student.getName() << " is " << student.getAge() << "" years old and "'
<< "has a stipend of "' <, student.getStipend() << "dollars.\n""
<< "His address is " << student.getAddress() << ""\n"";

}

The output is:

In Student ctor

In Graduate ctor

Michael is 24 years old and has a stipend of 6000 dollars.
His address is 8899 Storkes Rd. .
In Graduate dtor chaining
In Student dtor

< The compiler automatically calls each dtor when the object dies.
< The dtors are invoked in the opposite order of the ctors

Inheritance and Dtors (cont’d)

< What happens in main()

void main() {

Graduate student(**"Michael'", 24, 6000, "* 8899 Storkes Rd."");

cout << student.getName() << " is " << student.getAge() << "" years old and "'
<< "has a stipend of "' <, student.getStipend() << "dollars.\n""
<< "His address is " << student.getAddress() << ""\n"";

}

The output is:

In Student ctor

In Graduate ctor

Michael is 24 years old and has a stipend of 6000 dollars.
His address is 8899 Storkes Rd. .
In Graduate dtor chaining
In Student dtor

< The compiler automatically calls each dtor when the object dies.
< The dtors are invoked in the opposite order of the ctors

* In destructing the derived object, the base object is still in scope and
functioning correctly.

Chaining of Assignment Operator

< By default, the compiler adds a “bit-wise copy” assignment operator
for every class which you do not define an assignment operator

Chaining of Ass

< By default, the compiler adds a “bit-wise copy” assignment operator
for every class which you do not define an assignment operator

< If you have a class hierarchy where a class Derived Base
Inherits from a class Base. There are 4 possibilities In o
defining their assignment operators: Derived

Chaining of Assignment Operator

< By default, the compiler adds a “bit-wise copy” assignment operator
for every class which you do not define an assignment operator

< If you have a class hierarchy where a class Derived Base
Inherits from a class Base. There are 4 possibilities In o
defining their assignment operators: Derived

1. If both classes do not have assignment operator: both are bit-wise copy

Chaining of Assignment Operator

< By default, the compiler adds a “bit-wise copy” assignment operator
for every class which you do not define an assignment operator

< If you have a class hierarchy where a class Derived Base |
Inherits from a class Base. There are 4 possibilities In %
defining their assignment operators: Derived

1. If both classes do not have assignment operator: both are bit-wise copy

2. If you define Base& Base::operator=(Base &) but not
Derived& Derived::operator=(Derived &), then compiler synthesizes

Chaining of Assignment Operator

< By default, the compiler adds a “bit-wise copy” assignment operator
for every class which you do not define an assignment operator

< If you have a class hierarchy where a class Derived Base |
Inherits from a class Base. There are 4 possibilities In %
defining their assignment operators: Derived
1. If both classes do not have assignment operator: both are bit-wise copy

2. If you define Base& Base::operator=(Base &) but not
Derived& Derived::operator=(Derived &), then compiler synthesizes

r\r\ I\A D nf\l":\ lf\fJ"f\If\f\lFf\"'f\lf—/r\f\ ' f\fd D IFIf\f\\ r
LJCIIVEUGL CTTVEU..UPCIAlul —=(JEITTIVEU AL TIS)

Base::operator=(rhs); // calling your function

return *this;

}

Chaining of Assignment Operator

< By default, the compiler adds a “bit-wise copy” assignment operator
for every class which you do not define an assignment operator

< If you have a class hierarchy where a class Derived Base |
Inherits from a class Base. There are 4 possibilities in A
defining their assignment operators: Derived |
1. If both classes do not have assignment operator: both are bit-wise copy

2. If you define Base& Base::operator=(Base &) but not
Derived& Derived::operator=(Derived &), then compiler synthesizes

r\r\ I\A D nf\l":\ lf\fJ"f\If\f\lFf\"'f\lf—/r\f\ ' f\fd D IFIf\f\\ r
LJCIIVEUGL CTTVEU..UPCIAlul —=(JEITTIVEU AL TIS)

Base::operator=(rhs); // calling your function

return *this;

}

3&4. If you define Derived& Derived::operator=(Derived &rhs) yourself, you have
to call Base::operator=(rhs); in Derived:.operator=(Derived) no matter it is
synthesized or not; otherwise the Base part of the object would not be copied.25_19

Chaining of Assignment Operator

< By default, the compiler adds a “bit-wise copy” assignment operator
for every class which you do not define an assignment operator

< If you have a class hierarchy where a class Derived Base
Inherits from a class Base. There are 4 possibilities in 4
defining their assignment operators: Derived |
1. If both classes do not have assignment operator: both are bit-wise copy

2. If you define Base& Base::operator=(Base &) but not
Derived& Derived::operator=(Derived &), then compiler synthesizes

r\r\ I\A D nf\l":\ lf\fJ"f\If\f\lFf\"'f\lf—/r\f\ ' f\fd D IFIf\f\\ r
LJCIIVEUGL CTTVEU..UPCIAlul —=(JEITTIVEU AL TIS)

Base::operator=(rhs); // calling your function

return *this;

}

3&4. If you define Derived& Derived::operator=(Derived &rhs) yourself, you have
to call Base::operator=(rhs); in Derived:.operator=(Derived) no matter it is
synthesized or not; otherwise the Base part of the object would not be copied.25_19

_ayers of Inheritance

< Let us add a new type of graduate student

_ayers of Inheritance

< Let us add a new type of graduate student

class Student {

public:
Student(char *name, int age);
~Student();
void setData(char *name, int age);
int getAge() const;
const char *getName() const;

private:
char *m_name;
Int m_age;

}

_ayers of Inheritance

< Let us add a new type of graduate student

class Student {
public:
Student(char *name, int age);
~Student();
void setData(char *name, int age);
int getAge() const;
const char *getName() const;
private:
char *m_name;
Int m_age;

}

class Graduate: public Student {
public:
Graduate(char *name, int age, int stipend);
Int getStipend() const;
private:
int m_stipend;

}

_ayers of Inheritance

< Let us add a new type of graduate student
class Student { class ForeignGraduate: public Graduate {

public: public: _
Student(char *name, int age): ForeignGraduate(char *name, int age,
~Student(); int stipend,
void setData(char *name, int age); char *nationality);
int getAge() const; ~ForeignGraduate()
const char *getName() const; const char *getNationality();

private: private:

char *m_name;
Int m_age; }:

}

char *m_nationality;

class Graduate: public Student {
public:
Graduate(char *name, int age, int stipend);
Int getStipend() const;
private:
int m_stipend;

}

_ayers of Inheritance (cont’d)

Student

x ctor of Student

Student::Student(char *name, int age) : m_age(age) {
m_name = new char[strlen(name)+1];
strcpy(m_name, name);

_ayers of Inheritance (cont’d)

Student

x ctor of Student

Student::Student(char *name, int age) : m_age(age) {

m_name = new char[strlen(name)+1];
strcpy(m_name, name);

_ayers of Inheritance (cont’d)

Student

-7

i

direct hase class

Graduate

_ayers of Inheritance (cont’d)

x ctor of Student

Student::Student(char *name, int age) : m_age(age) {
m_name = new char[strlen(name)+1];
strcpy(m_name, name);

Student
.7
direct hase class ﬂl

~

Graduate

x ctor of Graduate invokes the ctor of its direct base class - Student
Graduate::Graduate(char *name, int age, int stipend)
: Student(name, age), m_stipend(stipend) {
}

_ayers of Inheritance (cont’d)

x ctor of Student

Student::Student(char *name, int age) : m_age(age) {
m_name = new char[strlen(name)+1];
strcpy(m_name, name);

Student
.7
direct hase class ﬂl

~

Graduate

’¢7
- -

direct base class ﬂl

ForeignGraduate

x ctor of Graduate invokes the ctor of its direct base class - Student

NumnA i iAadbac el vmAaAli At Al Al A imAm~a A 2imd AmA 2imd adiea A~ Al
UOlduudle..oradauuate(llriar “ridiric, it aye, it stiperiu)

\ : Student(name, age), m_stipend(stipend) {

x ctor of Student

Student::Student(char *name, int age) : m_age(age) {
m_name = new char[strlen(name)+1];
strcpy(m_name, name);

-7

~

’¢7
- -

_ayers of Inheritance (cont’d)

Student

direct hase class ﬂl

Graduate

direct base class ﬂl

ForeignGraduate

x ctor of Graduate invokes the ctor of its direct base class - Student

NumnA i iAadbac el vmAaAli At Al Al A imAm~a A 2imd AmA 2imd adiea A~ Al
UOlduudle..oradauuate(llriar “ridiric, it aye, it stiperiu)

\ : Student(name, age), m_stipend(stipend) {

x ctor of ForeignGraduate invokes the ctor of its direct base class - Graduate

ForeignGraduate::ForeignGraduate(char *name,
Int age, int stipend, char *nationality)
: Graduate(name, age, stipend) {
m_nationality = new char[strlen(nationality)+1];
strcpy(m_nationality, nationality);

x ctor of Student

Student::Student(char *name, int age) : m_age(age) {
m_name = new char[strlen(name)+1]
strcpy(m_name, name);

Py 4
-
-

-

-
-
-

-7

Indlrect base class -

_--7

_ayers of Inheritance (cont’d)

Student

dlrect brase class ﬂl

Graduate

\\dll’eG’\[base class ﬂl

~

~

~

~

ForeignGraduate

x ctor of Graduate invokes the ctor of its direct base class - Student

PP Iy Y Y PN AU SravararAd N
UOlduudle..olrduuate(Ll ar IId.lIIB II It d.gt! II It bLI[JEI 1J)

\ : Student(name, age), m stlpend(stlpend){

x ctor of ForeignGraduate invokes the ctor of its direct base class - Graduate

ForeignGraduate::ForeignGraduate(char *name,
Int age, int stipend, char *nationality)
: Graduate(name, age, stipend) {
m_nationality = new char[strlen(nationality)+1];
strcpy(m_nationality, nationality);

Behavior Chanaing (Hidinc

< In the previous example, suppose we would like to have a display()
member function in the Student class that shows the details of a
Student object on the screen, ex.

Behavior Chanaing (Hidinc

< In the previous example, suppose we would like to have a display()
member function in the Student class that shows the details of a
Student object on the screen, ex.

void Student::display() const {
cout << m_name << " is " << m_age << "years old.\n"";

}

Behavior Chanaing (Hidinc

< In the previous example, suppose we would like to have a display()
member function in the Student class that shows the details of a
Student object on the screen, ex.

void Student::display() const {
cout << m_name << " is " << m_age << "years old.\n"";

}
+ The Graduate class automatically inherits this member function.

However, the output of this function for a Graduate object is in a
way short of many important data.

Behavior Chanaing (Hidinc

In the previous example, suppose we would like to have a display()
member function in the Student class that shows the details of a
Student object on the screen, ex.

void Student::display() const {
cout << m_name << " is " << m_age << "years old.\n"";

}
The Graduate class automatically inherits this member function.

However, the output of this function for a Graduate object is in a
way short of many important data.

We would like to redefine this function in the derived class -
Graduate, such that it will show the stipend and address together.

Behavior Chanaing (Hidinc

In the previous example, suppose we would like to have a display()
member function in the Student class that shows the details of a
Student object on the screen, ex.

void Student::display() const {
cout << m_name << " is " << m_age << "years old.\n"";

}
The Graduate class automatically inherits this member function.

However, the output of this function for a Graduate object is in a
way short of many important data.

We would like to redefine this function in the derived class -
Graduate, such that it will show the stipend and address together.

void Graduate::display() const { // masks the inherited version of display()
cout << getName() << " is "' << getAge() << '* years old.\n"";
cout << ""He has a stipend of " << m_stipend << " dollars.\n"";
cout << ""His address is " << m_address << "".\n"";

}

Behavior Chanaing (Hidinc

In the previous example, suppose we would like to have a display()
member function in the Student class that shows the details of a
Student object on the screen, ex.

void Student::display() const {
cout << m_name << " is " << m_age << "years old.\n"";

}
The Graduate class automatically inherits this member function.

However, the output of this function for a Graduate object is in a
way short of many important data.

We would like to redefine this function in the derived class -
Graduate, such that it will show the stipend and address together.

void Graduate::display() const { // masks the inherited version of display()
cout << getName() << " is "' << getAge() << '* years old.\n"";
cout << ""He has a stipend of " << m_stipend << " dollars.\n"";
cout << ""His address is " << m_address << "".\n"";

}
Note: function signature is exactly the same as in the base class. re 2

Behavior Changing (cont’d)

<~ Example usage of the previous design:

<~ Example usage of the previous design:

Behavior Changing (cont’d)

o : Student

ctor(), dtor()

getAge()
getName()

display()

m_name = "Mel"
m_age = 19

<~ Example usage of the previous design:

Behavior Changing (cont’d)

o : Student

ctor(), dtor()

getAge()
getName()

display()

m_name = "Mel"
m_age = 19

- Graduate

<~ Example usage of the previous design:

Behavior Changing (cont’d)

o : Student

ctor(), dtor()

getAge()
getName()

display()

m_name = "Mel"
m_age = 19

- Graduate

., - Student

" m_name = "Ron" !

m_stipend = 3000

<~ Example usage of the previous design:

Behavior Changing (cont’d)

o : Student

ctor(), dtor()

getAge()
getName()

display()

m_name = "Mel"
m_age = 19

ctor(), dtor()
getStipend()

display()

*: Graduate

., - Student

getAge()
getName()

——isplay()

" m_name = "Ron" !

m_stipend = 3000

<~ Example usage of the previous design:

Student student1(*"Alice", 20);
Graduate student2(**Michael"’, 24, 6000, '*8899 Storkes Rd."");

Behavior Changing (cont’d)

o : Student

ctor(), dtor()

getAge()
getName()

display()

m_name = "Mel"
m_age = 19

ctor(), dtor()
getStipend()

display()

*: Graduate

., - Student

getAge()
getName()

——isplay()

" m_name = "Ron" !

m_stipend = 3000

Behavior Changing (cont’d)

<~ Example usage of the previous design:

Student student1(*"Alice", 20);
Graduate student2(**Michael"’, 24, 6000, '*8899 Storkes Rd."");

studentl.display(); // Student::display() . e - Student
cout << "\n'; ctor(), dtor() | m_name = "Mel"

getAge() m_age = 19
getName()

display()

ctor(), dtor()| - Graduate
getStipend()

display() | : Student

getAge() " m_name = "Ron"
getName() |i--= ’

——isplay() m_stipend = 3000

<~ Example usage of the previous design:
Student studentl1(**Alice, 20);

Graduate student2(**Michael"’, 24, 6000, '*8899 Storkes Rd."");

studentl.display(); // Student::display() .

Behavior Changing (cont’d)

o : Student

cout << "\n"";

Output:

ctor(), dtor()

getAge()
getName()

display()

m_name = "Mel"
m_age = 19

Alice is 20 years old.

ctor(), dtor()
getStipend()

display()

*: Graduate

., - Student

——isplay()

getAge()
getName()

" m_name = "Ron" !

m_stipend = 3000

Behavior Changing (cont’d)

<~ Example usage of the previous design:

Student student1(*"Alice", 20);
Graduate student2(**Michael"’, 24, 6000, '*8899 Storkes Rd."");

studentl.display(); // Student::display() . e - Student
cout << "\n'; ctor(), dtor() | m_name = "Mel"

getAge() m_age = 19
getName()

student2.display(); // Graduate::display()

Output: display()

Alice is 20 years old. ctor(), dtor() *: Graduate
getStipend()
display() |: :Student .
getAge() : m_name = "Ron" i
getName() | :i--= :

——isplay() m_stipend = 3000

Behavior Changing (cont’d)

<~ Example usage of the previous design:

Student student1(*"Alice", 20);
Graduate student2(**Michael"’, 24, 6000, '*8899 Storkes Rd."");

studentl.display(); // Student::display() . e - Student
cout << "\n'; ctor(), dtor() | m_name = "Mel"

student2.display(); // Graduate::display() ggmg?n%() m_age = 19

Output: display()

Alice is 20 years old. ctor(), dtor() *: Graduate
getStipend()

He has a stipend of 6000 dollars. SIERIERI L Student
His address is 8899 Storke Rd. getAge() | MLTEVISS RE ;

Michael is 24 years old.

getName()

——isplay() m_stipend = 3000

Behavior Changing (cont’d)

<~ Example usage of the previous design:

Student student1(*"Alice", 20);
Graduate student2(**Michael"’, 24, 6000, '*8899 Storkes Rd."");

studentl.display(); // Student::display() . e - Student
cout << "\n'; ctor(), dtor() | m_name = "Mel"

student2.display(); // Graduate::display() ggmg?n%() m_age = 19

Output: display()

Alice is 20 years old. ctor(), dtor() *: Graduate
getStipend()

He has a stipend of 6000 dollars. SIERIERI L Student
His address is 8899 Storke Rd. getAge() | MLTEVISS RE ;

Michael is 24 years old.

getName()

——isplay() m_stipend = 3000
<~ Note: display() interface usually
can enhance the encapsulation, replacing the
functionality of trivial accessor functions

Behavior Changing (cont’d)

< Avoid the redundancy of the common code, Student::display(),
In the Inherited version of display(), Graduate::display(), by

Behavior Changing (cont’d)

< Avoid the redundancy of the common code, Student::display(),
In the Inherited version of display(), Graduate::display(), by

void Graduate::display() const // masks the inherited version of display() {

cout << ""He has a stipend of " << m_stipend << " dollars.\n"";
cout << ""His address is " << m_address << "".\n"";

}

Behavior Changing (cont’d)

< Avoid the redundancy of the common code, Student::display(),
In the Inherited version of display(), Graduate::display(), by

void Graduate::display() const // masks the inherited version of display() {
Student::display(); // invoke the inherited codes
cout << ""He has a stipend of " << m_stipend << " dollars.\n"";
cout << ""His address is " << m_address << ".\n"";

}

Behavior Changing (cont’d)

< Avoid the redundancy of the common code, Student::display(),
In the Inherited version of display(), Graduate::display(), by

void Graduate::display() const // masks the inherited version of display() {
Student::display(); // invoke the inherited codes
cout << ""He has a stipend of " << m_stipend << " dollars.\n"";
cout << ""His address is " << m_address << ".\n"";

}

< The functions defined in the base class are OK for most derived
classes. Only some of them need to be changed in the derived
classes. EX.

Behavior Changing (cont’d)

< Avoid the redundancy of the common code, Student::display(),
In the Inherited version of display(), Graduate::display(), by

void Graduate::display() const // masks the inherited version of display() {
Student::display(); // invoke the inherited codes
cout << ""He has a stipend of " << m_stipend << " dollars.\n"";
cout << ""His address is " << m_address << ".\n"";

}

< The functions defined in the base class are OK for most derived
classes. Only some of them need to be changed in the derived
classes. EX.

TwoDimShape

JaN

Rectangle Triangle

Behavior Changing (cont’d)

< Avoid the redundancy of the common code, Student::display(),
In the Inherited version of display(), Graduate::display(), by

void Graduate::display() const // masks the inherited version of display() {
Student::display(); // invoke the inherited codes
cout << ""He has a stipend of " << m_stipend << " dollars.\n"";
cout << ""His address is " << m_address << ".\n"";

}

< The functions defined in the base class are OK for most derived
classes. Only some of them need to be changed in the derived
classes. EX.

TwoDimShape | calculateArea() width*height

JaN

Rectangle Triangle

Behavior Changing (cont’d)

< Avoid the redundancy of the common code, Student::display(),
In the Inherited version of display(), Graduate::display(), by

void Graduate::display() const // masks the inherited version of display() {
Student::display(); // invoke the inherited codes
cout << ""He has a stipend of " << m_stipend << " dollars.\n"";
cout << ""His address is " << m_address << ".\n"";

}

< The functions defined in the base class are OK for most derived
classes. Only some of them need to be changed in the derived
classes. EX.

TwoDimShape | calculateArea() width*height

JaN

Rectangle Triangle

calculateArea()

Behavior Changing (cont’d)

< Avoid the redundancy of the common code, Student::display(),
In the Inherited version of display(), Graduate::display(), by

void Graduate::display() const // masks the inherited version of display() {
Student::display(); // invoke the inherited codes
cout << ""He has a stipend of " << m_stipend << " dollars.\n"";
cout << ""His address is " << m_address << ".\n"";

}

< The functions defined in the base class are OK for most derived
classes. Only some of them need to be changed in the derived
classes. EX.

TwoDimShape | calculateArea() width*height

A

Rectangle Triangle

calculateArea()

1/2*TwoDimShape::calculate Area()

25-24

Class Hierarchy

< sub-class super-class relationship can lead to a class hierarchy or
Inheritance hierarchy.

Class Hierarchy

< sub-class super-class relationship can lead to a class hierarchy or
Inheritance hierarchy.

Example:

Class Hierarchy

< sub-class super-class relationship can lead to a class hierarchy or
Inheritance hierarchy.

Example:

Class Hierarchy

< sub-class super-class relationship can lead to a class hierarchy or
Inheritance hierarchy.

Example:

Delivery

Class Hierarchy

< sub-class super-class relationship can lead to a class hierarchy or
Inheritance hierarchy.

Example:

Delivery

Class Hierarchy

< sub-class super-class relationship can lead to a class hierarchy or
Inheritance hierarchy.

Example:

Delivery

Class Hierarchy

< sub-class super-class relationship can lead to a class hierarchy or
Inheritance hierarchy.

Example:

Delivery

Class Hierarchy

< sub-class super-class relationship can lead to a class hierarchy or
Inheritance hierarchy.

Example:

Delivery

Class Hierarchy

< sub-class super-class relationship can lead to a class hierarchy or
Inheritance hierarchy.

Example:

Delivery

Class Hierarchy

< sub-class super-class relationship can lead to a class hierarchy or
Inheritance hierarchy.

Example:

Delivery

Class Hierarchy

< sub-class super-class relationship can lead to a class hierarchy or
Inheritance hierarchy.

Example:

Delivery

Class Hierarchy

< sub-class super-class relationship can lead to a class hierarchy or
Inheritance hierarchy.

Example:

Delivery

Class Hierarchy

< sub-class super-class relationship can lead to a class hierarchy or
Inheritance hierarchy.

Example:

Delivery

Class Hierarchy

< sub-class super-class relationship can lead to a class hierarchy or
Inheritance hierarchy.

Example:

Delivery

Class Hierarchy

< sub-class super-class relationship can lead to a class hierarchy or
Inheritance hierarchy.

Example:

Vehicle

Delivery

Class Hierarchy

< sub-class super-class relationship can lead to a class hierarchy or
Inheritance hierarchy.

Example:

Vehicle
AN

Delivery

Class Hierarchy

< sub-class super-class relationship can lead to a class hierarchy or
Inheritance hierarchy.

Example:

Appliance Vehicle
VAN

Delivery

Class Hierarchy

< sub-class super-class relationship can lead to a class hierarchy or
Inheritance hierarchy.

Example:

Appliance Vehicle Computer
VAN

Delivery

Class Hierarchy

< sub-class super-class relationship can lead to a class hierarchy or
Inheritance hierarchy.

Example:

Appliance Vehicle Computer
VAN

Delivery

Class Hierarchy

< sub-class super-class relationship can lead to a class hierarchy or
Inheritance hierarchy.

Example:

AN

Appliance Vehicle Computer
VAN

Delivery

Real-World Examples Of Inheritance

< Microsoft Foundation Class Version 6.0

Real-World Examples Of Inheritance

< Microsoft Foundation Class Version 6.0
* A tree-style class hierarchy

Real-World Examples Of Inheritance

< Microsoft Foundation Class Version 6.0
* A tree-style class hierarchy

<+ Java Class Library
S

Microsoft Foundation Class Library Version 6.0

CObject

L

Application Architecture
CCmdTarget

—CWinThread
Lcwinﬂpp
LCOIECDntrDIM odule
|—u59r application
—CDocTempl ate
|:C5ir'|gleD ocTem pl ate
CMultiDocTempl ate
—COledbjectFactory
LCOIeTempIateServer
—COleD ataSource
—COleDropSource
—COleDropTarget
—COleMessageFilter

—CConnectionPoint

Window Support
LCWnd

Frame Windows
—CFrame'wnd

—CMDIChIIdWnd
|—u59r MDI windows

- CMOD IFrame'wnd

—CMiniFrame'nd
—user SO0 windows
LCOlelPFramewnd
- CSplitterwnd

—CDocument
—COleDocument
LCOI eLinkingDoc
|—C DleServerDoc

L crichEditboc
—user documents
—CDocltem
—CO0leclientItem
—COleDocObjectItem
—CRichEditCntrltem

“user client items

LCOleServerltem

—user server items

|—u59r MDI workspaces

CDocObjects eryer

LDialug Boxes
CDialog

—CCommonDialog

—CColorDialog

—CFileDialog

—CFindReplacehialog

- CFontDialog

L COleDialog
COleBusyDialog

—CDocObjectServerltem

COleChangelconDialog

user ohjects

Exceptions

CExzception
—CarchiveException

- CDaoException
—COBException
—CFileException
—CInternetException
—CMemoryException
—CMotSupportedException
—COleException
—COleDispatchEx ception

—CResourceException

L ClUserException

L"u’iews

Chi e

—C CErl i ew
-CEdityiew
—CList iew
-CRichEditview

LCT re et ew

LCScrol Wi ew

—user scroll views

LCFormY iew

File Services
- CFile

—CMemFile
LCSharedFiIe
—COleStreamFile
LCMDnikerFiIe
LCAEvncMDnikerFile

—CSocketFile
_C5tdioFile
|—CIr'|terr'|etFiIe
|:CGDpherFiIe
CHttpFile

- CRecentFileList

Controls
- CAnimatectrl

—CButtan
|—CE- itrnapButton
—CComboB ox
LCCDm boB oxEx
—CDateTimeCtrl
- CEdit
—CHeader Ctrl
- CH otk ey Ctrl

LCD ataP athProperty
LCC achedDataPathProperty

Gra
=D

Mel
— L

Cor
- CC

oD
Sujp

—cD.
—CRE

o of

Da

Sur

Inheritance Design

4

Exploring Solutions to Inheritance

< The University database program

Exploring Solutions to Inheritance

< The University database program

Student

i

Graduate

Exploring Solutions to Inheritance

< The University database program

. » : Student =
ctor(), dtor() | m_name f

setData() m_age

getAge()

Exploring Solutions to Inheritance

< The University database program

e - Student *"ctor(), dtor() | - Graduate Student

“ctor(), dtor() | “m pame getStipend() | i :
Sei[z\ata(()) m_age getAddress() | : n? tlrjlgﬁgt i f
e e ° . — :
getNgme() setData() s : Graduate
getAge() m_stipend
getName() m_address

Exploring Solutions to Inheritance

< The University database program

e - Student *"ctor(), dtor() | - Graduate Student

“ctor(), dtor() | “m pame getStipend() | i :
Sei[z\ata(()) m_age getAddress() | : n? tlrjlgﬁgt i f
e e ° . — :
getNgme() setData() s : Graduate
getAge() m_stipend
getName() m_address

<~ We would like to add a class Faculty, whose attributes include

Exploring Solutions to Inheritance

< The University database program

- e - Student *"ctor(), dtor() | - Graduate Student

ctor(), dtor() | m name getStipend() | i~ |
Sei[z\ata(()) m_age getAddress() | : n? tlrjlgﬁgt i f
e e ° . — :
getNgme() setData() LS : Graduate
getAge() m_stipend
getName() m_address

<~ We would like to add a class Faculty, whose attributes include

m_name

{ m_age
m_address
m_rank

Exploring Solutions to Inheritance

< The University database program

- e - Student *"ctor(), dtor() | - Graduate Student

ctor(), dtor() m name getStipend() | - :

sett[z\ata(()) m_age getAddress() | : n‘? urjlgr?gti f

etAge . * m i

getNgme() SetDa’[a() ! . : Graduate
getAge() m_stipend
getName() m_address

<~ We would like to add a class Faculty, whose attributes include

m_age
m_address
m_rank

{ m_name room # and building id of the office

Exploring Solutions to Inheritance

< The University database program

- e - Student *"ctor(), dtor() | - Graduate Student

ctor(), dtor() | m name getStipend() | i~ |
Sei[z\ata(()) m_age getAddress() | : n? tlrjlgﬁgt i f
e e ° . — :
getNgme() setData() LS : Graduate
getAge() m_stipend
getName() m_address

<~ We would like to add a class Faculty, whose attributes include

m_age
m_address
m_rank

{ m_name room # and building id of the office

Note that there is no stipend.

Exploring Solutions to Inheritance

< The University database program

- e - Student *"ctor(), dtor() | - Graduate Student

ctor(), dtor() | m name getStipend() | i~ |
Sei[z\ata(()) m_age getAddress() | : n? tlrjlgﬁgt i f
e e ° . — :
getNgme() setData() LS : Graduate
getAge() m_stipend
getName() m_address

<~ We would like to add a class Faculty, whose attributes include

m_age
m_address
m_rank

{ m_name room # and building id of the office

Note that there is no stipend.

< Should Faculty be derived from Student or Graduate or none of both?

Exploring Solutions to Inheritance

< The University database program

e - Student *"ctor(), dtor() | - Graduate Student

“ctor(), dtor() | “m pame getStipend() | i :

Sei[z\ata(()) m_age getAddress() | : n? tlrjlgﬁgt i f

e e ° . — :

getNgme() setData() s : Graduate
getAge() m_stipend
getName() m_address

<~ We would like to add a class Faculty, whose attributes include

{ m_name room # and building id of the office
m_age

m_address

- Note that there iIs no stipend.

< Should Faculty be derived from Student or Graduate or none of both?

< Let us first try inheriting Faculty from Graduate since the two groups

have so much data in common .

Exploring Solutions (cont’d)

< Deriving Faculty from Graduate makes a very efficient reuse of codes

Exploring Solutions (cont’d)

< Deriving Faculty from Graduate makes a very efficient reuse of codes

class Faculty: public Graduate {
public:
Faculty(char *name, int age, char *address, char *rank);
~Faculty();
const char *getRank() const;
private:
char *m_rank;

h

Exploring Solutions (cont’d)

< Deriving Faculty from Graduate makes a very efficient reuse of codes
class Faculty: public Graduate { Student

public:
Faculty(char *name, int age, char *address, char *rank); Zr
~Faculty();

const char *getRank() const; Graduate

private:
char *m_rank;

g Faculty

Exploring Solutions (cont’d)

< Deriving Faculty from Graduate makes a very efficient reuse of codes
class Faculty: public Graduate { Student

public:
Faculty(char *name, int age, char *address, char *rank); Zr
~Faculty();

const char *getRank() const; Graduate

private:
char *m_rank;

g : : : Faculty
<~ We are forced to ignore Graduate::m_stipend in ctor

Exploring Solutions (cont’d)

< Deriving Faculty from Graduate makes a very efficient reuse of codes
class Faculty: public Graduate { Student

public:
Faculty(char *name, int age, char *address, char *rank); Zr
~Faculty();

const char *getRank() const; Graduate

private:
char *m_rank;

g : : : Faculty
<~ We are forced to ignore Graduate::m_stipend in ctor

Faculty::Faculty(char *name, int age, char *address, char *rank)
: Graduate(name, age, 0, address) {
m_rank = new char[strlen(rank)+N Zero is a dummy

strcpy(m_rank, rank); value for the stipend

}

Exploring Solutions (cont’d)

< Deriving Faculty from Graduate makes a very efficient reuse of codes
class Faculty: public Graduate { Student

public:
Faculty(char *name, int age, char *address, char *rank); Zr
~Faculty();

const char *getRank() const; Graduate

private:
char *m_rank;

g : : : Faculty
<~ We are forced to ignore Graduate::m_stipend in ctor

Faculty::Faculty(char *name, int age, char *address, char *rank)
: Graduate(name, age, 0, address) {
m_rank = new char[strlen(rank)+N Zero is a dummy

strcpy(m_rank, rank); value for the stipend

< However, the client can still do this

Exploring Solutions (cont’d)

< Deriving Faculty from Graduate makes a very efficient reuse of codes
class Faculty: public Graduate { Student

public:
Faculty(char *name, int age, char *address, char *rank); Zr
~Faculty();

const char *getRank() const; Graduate

private:
char *m_rank;

g : : : Faculty
<~ We are forced to ignore Graduate::m_stipend in ctor

Faculty::Faculty(char *name, int age, char *address, char *rank)
: Graduate(name, age, 0, address) {
m_rank = new char[strlen(rank)+N Zero is a dummy

strcpy(m_rank, rank); value for the stipend

< However, the client can still do this

Faculty prof(*'Lin", 40, "'#2 Bei-Ning"", ""Associate Professor");
cout << prof.getStipend();

Exploring Solutions (cont’d)

< Deriving Faculty from Graduate makes a very efficient reuse of codes
class Faculty: public Graduate { Student

public:
Faculty(char *name, int age, char *address, char *rank); Zr
~Faculty();

const char *getRank() const; Graduate

private:
char *m_rank;

g : : : Faculty
<~ We are forced to ignore Graduate::m_stipend in ctor

Faculty::Faculty(char *name, int age, char *address, char *rank)
: Graduate(name, age, 0, address) {
m_rank = new char[strlen(rank)+N Zero is a dummy

strcpy(m_rank, rank); value for the stipend

< However, the client can still do this

Faculty prof(*'Lin", 40, "'#2 Bei-Ning"", ""Associate Professor");
cout << prof.getStipend();

You can spare a data member but cannot
turn off an interface of the base class.

25-

Exploring Solutions (cont’d)

< Deriving Faculty from Graduate makes a very efficient reuse of codes
class Faculty: public Graduate { Student

public:
Faculty(char *name, int age, char *address, char *rank); Zr
~Faculty();

const char *getRank() const; Graduate

private:
char *m_rank;

g : : : Faculty
<~ We are forced to ignore Graduate::m_stipend in ctor

Faculty::Faculty(char *name, int age, char *address, char *rank)
: Graduate(name, age, 0, address) {
m_rank = new char[strlen(rank)+N Zero is a dummy

strcpy(m_rank, rank); value for the stipend

< However, the client can still do this

Faculty prof(*'Lin", 40, "'#2 Bei-Ning"", ""Associate Professor");
cout << prof.getStipend();

You can spare a data member but cannot
Thisis NOT a good solution! turn off an interface of the base class.

25-

Another Possible Solution

<~ How about deriving Faculty from Student because
Faculty requires all of the data from Student

Another Possible Solution

<~ How about deriving Faculty from Student because
Faculty requires all of the data from Student

class Faculty: public Student {
public:
Faculty(char *name, int age, char *address, char *rank);
~Faculty();
const char *getRank() const;
const char *getAddress() const;

private:
char *m_address;
char *m_rank;

| §

Another Possible Solution

<~ How about deriving Faculty from Student because
Faculty requires all of the data from Student

class Faculty: public Student {
public:
Faculty(char *name, int age, char *address, char *rank);
~Faculty();
const char *getRank() const; Student
const char *getAddress() const;
private: Z%
char *m_address;
char *m_rank;

| §

Graduate Faculty

Another Possible Solution

<~ How about deriving Faculty from Student because
Faculty requires all of the data from Student

class Faculty: public Student {

public:
Faculty(char *name, int age, char *address, char *rank);
~Faculty();
const char *getRank() const; Student
const char *getAddress() const;

private: Z%
char *m_address;
char *m_rank;

%
<~ What is the problem now?

Graduate Faculty

Another Possible Solution

<~ How about deriving Faculty from Student because
Faculty requires all of the data from Student

class Faculty: public Student {

public:
Faculty(char *name, int age, char *address, char *rank);
~Faculty();

const char *getRank() const; Student

const char *getAddress() const;
private: Z%

char *m_address;

char *m_rank;

Graduate

Faculty

%
<~ What is the problem now?

* Faculty duplicates some codes in Graduate: m_address related

Another Possible Solution

<~ How about deriving Faculty from Student because
Faculty requires all of the data from Student

class Faculty: public Student {

public:
Faculty(char *name, int age, char *address, char *rank);
~Faculty();
const char *getRank() const; Student
const char *getAddress() const;

private: Z%
char *m_address;
char *m_rank;

};

<~ What is the problem now?

* Faculty duplicates some codes in Graduate: m_address related
* What happens if Student adds a field for "undergraduate advisor"?

Graduate Faculty

Another Possible Solution

<~ How about deriving Faculty from Student because
Faculty requires all of the data from Student

class Faculty: public Student {

public:
Faculty(char *name, int age, char *address, char *rank);
~Faculty();
const char *getRank() const; Student
const char *getAddress() const;

private: Z%
char *m_address;
char *m_rank;

};

<~ What is the problem now?

* Faculty duplicates some codes in Graduate: m_address related

* What happens if Student adds a field for "undergraduate advisor"?
x The problem is that Faculty is intrinsically not a Student.

Graduate Faculty

Another Possible Solution

<~ How about deriving Faculty from Student because
Faculty requires all of the data from Student

class Faculty: public Student {

public:
Faculty(char *name, int age, char *address, char *rank);
~Faculty();
const char *getRank() const; Student
const char *getAddress() const;

private: Z%
char *m_address;
char *m_rank;

};

<~ What is the problem now?

* Faculty duplicates some codes in Graduate: m_address related

* What happens if Student adds a field for "undergraduate advisor"?
x The problem is that Faculty is intrinsically not a Student.

“Inheritance SHOULD NOT be designed based on solely
Implementation considerations — eg. code reuse.”

Graduate Faculty

25-31

A Better Design

< Create a Person class and put everything common to all people in
that class, all other classes are derived from this class.

A Better Design

< Create a Person class and put everything common to all people in
that class, all other classes are derived from this class.

Person
getAge()
getName()
m_age
m_name

JAN

Undergraduate Graduate Faculty

getStipend() getRank()
getAddress() getAddress()
m_ stipend m_rank
m_address m_address

A Better Design

< Create a Person class and put everything common to all people in
that class, all other classes are derived from this class.

Person

getAge()
getName()
m_age

< Student is replaced by m_name

Undergraduate AN

Undergraduate Graduate Faculty

getStipend() getRank()
getAddress() getAddress()
m_ stipend m_rank
m_address m_address

A Better Design

< Create a Person class and put everything common to all people in
that class, all other classes are derived from this class.

Person

getAge()
getName()
m_age

< Student is replaced by m_name

Undergraduate AN

Undergraduate Graduate Faculty

getStipend() getRank()
getAddress() getAddress()
m_ stipend m_rank
m_address m_address

< Should we eliminate UnderGraduate
and use only Person in its place?

A Better Design

< Create a Person class and put everything common to all people in
that class, all other classes are derived from this class.

Person

getAge()
getName()
m_age

< Student is replaced by m_name
Undergraduate AN

Undergraduate Graduate Faculty
getStipend() getRank()
getAddress() getAddress()
m_ stipend m_rank
m_address m_address

< Should we eliminate UnderGraduate
and use only Person in its place?

< Should Graduate be derived from Undergraduate?

A Better Design

Create a Person class and put everything common to all people in
that class, all other classes are derived from this class.

Person

getAge()
getName()
m_age

Student is replaced by m_name
Undergraduate AN

Undergraduate Graduate Faculty

getStipend() getRank()
getAddress() getAddress()
m_ stipend m_rank
m_address | m_address

Should we eliminate UnderGraduate \/4

and use only Person in its place? Is there any redundancy?

Should Graduate be derived from Undergraduate?

Adding an Office Class

Adding an Office Class

< Codes related to address could be merged into a single copy. How
about encapsulating all data related to the address in the Office class?

Adding an Office Class

< Codes related to address could be merged into a single copy. How
about encapsulating all data related to the address in the Office class?

< Anyone who needs an office can then inherit from Office.

Office

T

Graduate Faculty

Adding an Office Class

< Codes related to address could be merged into a single copy. How
about encapsulating all data related to the address in the Office class?

< Anyone who needs an office can then inherit from Office.

< But Graduate and Faculty still need to Office
Inherit name and age categories so this o

design forces us to this inheritance

Graduate Faculty

Adding an Office Class

< Codes related to address could be merged into a single copy. How
about encapsulating all data related to the address in the Office class?

< Anyone who needs an office can then inherit from Office.

< But Graduate and Faculty still need to Office
Inherit name and age categories so this o

design forces us to this inheritance

Graduate Faculty

T

Undergraduate

T

Graduate Faculty

Adding an Office Class

< Codes related to address could be merged into a single copy. How
about encapsulating all data related to the address in the Office class?

< Anyone who needs an office can then inherit from Office.

< But Graduate and Faculty still need to Office
Inherit name and age categories so this o
design forces us to this inheritance

Graduate Faculty

Z% Bad design!! Problematic!!?

Undergraduate

T

Graduate Faculty

Adding an Office Class

< Codes related to address could be merged into a single copy. How
about encapsulating all data related to the address in the Office class?

< Anyone who needs an office can then inherit from Office.

< But Graduate and Faculty still need to Office
Inherit name and age categories so this o
design forces us to this inheritance

Graduate Faculty

Z% Bad design!! Problematic!!?

What's wrong?

Undergraduate

T

Graduate Faculty

Adding an Office Class

< Codes related to address could be merged into a single copy. How
about encapsulating all data related to the address in the Office class?

< Anyone who needs an office can then inherit from Office.

< But Graduate and Faculty still need to Office
Inherit name and age categories so this o
design forces us to this inheritance

Graduate Faculty

Z% Bad design!! Problematic!!?

What's wrong?

Undergraduate

o If the Office has a clean() method,
% The Faculty automatically has a
clean() method. What does it mean?

Graduate Faculty » What if a faculty has two offices?
25-33

Code for Office Solution

class Office: public Person {
public:
Office(char *name, int age, char address);
~Office()
const char *getAddress() const;
private:
char *m_address;

h

Code for Office Solution

class Office: public Person {
public:
Office(char *name, int age, char address);
~Office()
const char *getAddress() const;
private:
char *m_address;
1
class Graduate: public Office {
public:
Graduate(char *name, int age, int stipend, char *address);
Int getStipend() const;
private:
Int m_stipend;

};

Code for Office Solution

class Office: public Person {
public:
Office(char *name, int age, char address);
~Office()
const char *getAddress() const;
private:
char *m_address;

1
class Graduate: public Office {

public:
Graduate(char *name, int age, int stipend, char *address);
Int getStipend() const;
private:
Int m_stipend;
};
class Faculty: public Office {
public:
Faculty(char *name, int age, char *address, char *rank);
~Faculty();
const char *getRank() const;
private:
char *m_rank;

Code for Office Solution

class Office: public Person {
public:

Office(char *name, int age, char address);

~Office()

const char *getAddress() const; :
private: Poor design!!

h * . -
g, T e Problematic!!?

class Graduate: public Office {
public:
Graduate(char *name, int age, int stipend, char *address);
Int getStipend() const;
private:
Int m_stipend;
};
class Faculty: public Office {
public:
Faculty(char *name, int age, char *address, char *rank);
~Faculty();
const char *getRank() const;
private:
char *m_rank;

Final Solution

< Back to our original inheritance design (good design)

Person
AN

[|
Undergraduate Graduate Faculty

Final Solution

< Back to our original inheritance design (good design)

Person
AN

Undergraduate Graduate —| Faculty | Office

+ Instead of having Graduate and Faculty inherit from Office, we

store an Office object within each classes

Final Solution

< Back to our original inheritance design (good design)

Person
AN

[
Undergraduate Graduate —| Faculty | Office

+ Instead of having Graduate and Faculty inherit from Office, we

store an Office object within each classes
< The office class exists separately, without involving any inheritance

< Codes:
class Office {
public:
Office(char *address);
~Office();
const char *getAddress() const;

private:
char *m_address;

b

Final Solution (cont’d)

class Graduate: public Person {
public:
Graduate(char *name, int age, int stipend, char *address);
int getStipend() const;
const char* getAddress() const;
private:
int m_stipend;
Office m_office;

&

Final Solution (cont’d)

class Graduate: public Person {

public:
Graduate(char *name, int age, int stipend, char *address);
int getStipend() const;
const char* getAddress() const;

private:)
int m_stipend; 2 {
Office m_office; public:

: « Faculty(char *name, int age, char *address, char *rank);

~Faculty();

const char* getAddress() const;

const char *getRank() const;
private:

char *m_rank;

Office m_office;

h

Final Solution (cont’d)

class Graduate: public Person {
public:
Graduate(char *name, int age, int stipend, char *address);
int getStipend() const;
const char* getAddress() const;
private:)
int m_stipend; 2 {
Office m_office; public:
: « Faculty(char *name, int age, char *address, char *rank);
~Faculty();
const char* getAddress() const;

- N const char *getRank() const;
const char* Graduate:: _ private:

getAddress() const { \ char *m rank:
return m_office.getAddress(); ; Office m_office;

}

Final Solution (cont’d)

class Graduate: public Person {
public:
Graduate(char *name, int age, int stipend, char *address);
int getStipend() const;
const char* getAddress() const;
private:)
int m_stipend; 2 {
Office m_office; public:

1 Faculty(char *name, int age, char *address, char *rank);

-

~Faculty();

delegation - const char* getAddress() const;

const char *getRank() const;

const char* Gm private: ° U
getAddress() const{ ¥ " char *m rank:

return m_office.getAddress(); ; Office m_office;

} %

Final Solution (cont’d)

class Graduate: public Person {
public:
Graduate(char *name, int age, int stipend, char *address);
int getStipend() const;
const char* getAddress() const;
private: -
int m_stipend; 2 {
Office m_office; ' public:

}; - Faculty(char *name, int age, char *address, char *rank);
- ~Faculty();

delegation - const char* getAddress() const;
- const char *getRank() const;
const char* Graduate:: _ private:

getAddress() const { \ char *m rank:
return m_office.getAddress(); ; Office m_office;

}

<~ Note: the data part m offlce In Graduate and Faculty is replicated.
However, the code to handle address is reduced to a single
copy, I.e. Office::getAddress(). If we want to maintain a single

object for the same office, we can use pointer or reference to

Implement m_office. 25-36

Further Abstraction

<~ When the relationships between Graduate or Faculty objects and
other objects are common, we can model their relationships within
a parent class.

Further Abstraction

<~ When the relationships between Graduate or Faculty objects and
other objects are common, we can model their relationships within
a parent class.

Person

L%

[|
Undergraduate PersonnelWithOffice

%

[I
Graduate Faculty

Further Abstraction

<~ When the relationships between Graduate or Faculty objects and
other objects are common, we can model their relationships within

a parent class.

Person

L%

Undergraduate

PersonnelWithOffice

%

Graduate

Faculty

Note: in the above class diagram, each

Graduate object or Faculty object
has an association with an Office

object

Further Abstraction

<~ When the relationships between Graduate or Faculty objects and
other objects are common, we can model their relationships within

a parent class.

Person

L%

[
Undergraduate

class PersonnelWithOffice {
public:

PersonnelWithOffice

z}

Graduate

Faculty

const char *getAddress() const;

private:
Office m_office;

h

Note:

In the above class diagram, each
Graduate object or Faculty object
has an association with an Office
object

Further Abstraction

<~ When the relationships between Graduate or Faculty objects and
other objects are common, we can model their relationships within

a parent class.

Person

L%

[|
Undergraduate PersonnelWithOffice

z}

[I
Graduate Faculty

class PersonnelWithOffice {
public:
const char *getAddress() const; Note: in the above class diagram, each

private: " Graduate object or Faculty object
Office m_office; has an association with an Office

b object

< If there could be several offices for a certain personnel, the private
member could be a container, ex. vector<Office> m_offices;

25-37

Design Rules for Inheritance

<~ Primary guide: Class A should only be derived from Class B if
Class A is a type of Class B

B

T

A

Design Rules for Inheritance

<~ Primary guide: Class A should only be derived from Class B if
Class A is a type of Class B

Person B

* A student is a person f RYA f
Student A

Design Rules for Inheritance

<~ Primary guide: Class A should only be derived from Class B if
Class A is a type of Class B

x A student Is a person

Person

TISA

Student

B

T

A

This def is formal
but still abstract!!
Difficult to follow!

Class A is a type of Class B

x A student Is a person

Person

TISA

Student

Design Rules for Inheritance

<~ Primary guide: Class A should only be derived from Class B if

B

T

A

This def is formal
but still abstract!!
Difficult to follow!

Design Rules for Inheritance

<~ Primary guide: Class A should only be derived from Class B if
Class A is a type of Class B

Person B Liskov substitution
* A student is a person f ISA f Principle (LSP)

Student A This def is formal
but still abstract!!
Difficult to follow!

Design Rules for Inheritance

<~ Primary guide: Class A should only be derived from Class B if

Class A is a type of Class B

Person

B

* A student is a person f RYA

T

Student

A

Liskov substitution
Principle (LSP)

* Inheritance is called an IS-A relatlonshlp

This def is formal
| but still abstract!!
Difficult to follow!

* What we mean by “is-a” In programmlng IS substitutability”.

* Eg. Can an object of type Student be used in whatever place of
ain UIJ_]CLI. UI lpr I"CIDUII’ I Illb Ib UCDLI IUCU III LCIIIID UI lIICIl
Interfaces (the promises and requirements), instead of their
Implementations. If yes, Student can inherit Person.

Design Rules for Inheritance

<~ Primary guide: Class A should only be derived from Class B if

Class A is a type of Class B

Person

B

* A student is a person f RYA

T

Student

A

Liskov substitution
Principle (LSP)

* Inheritance is called an IS-A relatlonshlp

This def is formal
| but still abstract!!
Difficult to follow!

* What we mean by “is-a” In programmlng IS substitutability”.

* Eg. Can an object of type Student be used in whatever place of
ain UIJ_]CLI. UI lpr I"CIDUII’ I Illb Ib UCDLI IUCU III LCIIIID UI lIICIl
Interfaces (the promises and requirements), instead of their
Implementations. If yes, Student can inherit Person.

< Inheritance should be “natural”

Design Rules for Inheritance

<~ Primary guide: Class A should only be derived from Class B if
Class A is a type of Class B

Person B Liskov substitution
* A student is a person f ISA f Principle (LSP)

Student A This def is formal

| but still abstract!!
* Inheritance is called an IS-A relatlonshlp Difficult to follow!

* What we mean by “is-a” In programmlng IS substitutability”.

* Eg. Can an object of type Student be used in whatever place of
ain UIJ_]CLI. UI lpr I"CIDUII’ I Illb Ib UCDLI IUCU III LCIIIID UI lIICIl
Interfaces (the promises and requirements), instead of their
Implementations. If yes, Student can inherit Person.

+ Inheritance should be “natural” Proper inheritance
Student

T

Graduate

Design Rules for Inheritance

<~ Primary guide: Class A should only be derived from Class B if
Class A is a type of Class B

Person B Liskov substitution
* A student is a person f ISA f Principle (LSP)

Student A This def is formal

| but still abstract!!
* Inheritance is called an IS-A relatlonshlp Difficult to follow!

* What we mean by “is-a” In programmlng IS substitutability”.

* Eg. Can an object of type Student be used in whatever place of
ain UIJ_]CLI. UI lpr I"CIDUII’ I Illb Ib UCDLI IUCU III LCIIIID UI lIICIl
Interfaces (the promises and requirements), instead of their
Implementations. If yes, Student can inherit Person.

+ Inheritance should be “natural” Proper inheritance Improper inheritance
Student Undergraduate

T T

Graduate Graduate

Design Rules for Inheritance

<~ Primary guide: Class A should only be derived from Class B if
Class A is a type of Class B

Person B Liskov substitution
* A student is a person f ISA f Principle (LSP)

Student A This def is formal

| but still abstract!!
* Inheritance is called an IS-A relatlonshlp Difficult to follow!

* What we mean by “is-a” In programmlng IS substitutability”.

* Eg. Can an object of type Student be used in whatever place of
ain UIJ_]CLI. UI lpr I"CIDUII’ I Illb Ib UCDLI IUCU III LCIIIID UI lIICIl
Interfaces (the promises and requirements), instead of their
Implementations. If yes, Student can inherit Person.

+ Inheritance should be “natural” Proper inheritance Improper inheritance
Student Undergraduate

x The second case IS a bad inheritance

even if Undergraduate is internally % %
Identical to Student. Graduate Graduate

Design Rules (cont’d)

Design Rules (cont’d)

Undergraduate

m_advisor

Design Rules (cont’d)

Undergraduate

Graduate

m_advisor

m_ office
m_stipend

Design Rules (cont’d)

Undergraduate Graduate Faculty
m_advisor m_office m_office
m_stipend m_rank

Design Rules (cont’d)

Undergraduate Graduate Faculty
m_advisor m_office m_office
m_stipend m_rank

Design Rules (cont’d)

N\

Undergraduate Graduate Faculty
m_advisor m_office m_office
m_stipend m_rank

Design Rules (cont’d)

<~ Common code and data between classes can be shared by creating
a base class (one of the two primary benefits we can get from

Inheritance) Person

m_age
m_name

N\

Undergraduate Graduate Faculty
m_advisor m_office m_office
m_stipend m_rank

Design Rules (cont’d)

<~ Common code and data between classes can be shared by creating
a base class (one of the two primary benefits we can get from

Inheritance) Person

m_age
m_name

N\

Undergraduate Graduate Faculty
m_advisor m_office m_office
m_stipend m_rank Graduate

Design Rules (cont’d)

<~ Common code and data between classes can be shared by creating
a base class (one of the two primary benefits we can get from

Inheritance) Person

m_age
m_name

N\

Undergraduate Graduate Faculty
m_advisor m_office m_office
= m_stipend m_rank Graduate Faculty

Design Rules (cont’d)

<~ Common code and data between classes can be shared by creating
a base class (one of the two primary benefits we can get from

Inheritance) Person

m_age
m_name

N\

Undergraduate Graduate Faculty
m_advisor m_office m_office
= m_stipend m_rank Graduate Faculty

Design Rules (cont’d)

<~ Common code and data between classes can be shared by creating
a base class (one of the two primary benefits we can get from
Inheritance)

Person

m_age
m_name

N\

Undergraduate

Graduate

Faculty

m_advisor

m_ office
m_stipend

m_ office
m_rank

JAN

Graduate

Faculty

Design Rules (cont’d)

<~ Common code and data between classes can be shared by creating
a base class (one of the two primary benefits we can get from
Inheritance) Person

m_age
m_name

N\

Undergraduate Graduate Faculty
m_advisor m_office m_office
m_stipend m_rank

Design Rules (cont’d)

Common code and data between classes can be shared by creating
a base class (one of the two primary benefits we can get from

Inheritance) Person

m_age
m_name

N\

| N

Undergraduate Graduate Faculty

m_advisor m_office m_office | |

m_stipend m_rank Gradu aculty

Never violate the primary objectives for the sake«ﬁ:ode sharir@\

Design Rules (cont’d)

<~ Common code and data between classes can be shared by creating
a base class (one of the two primary benefits we can get from

Inheritance) Person

m_age
m_name

N\

| N

Undergraduate Graduate Faculty
m_advisor m_office m_office | |
= m_stipend m_rank Gradu aculty

< Never violate the primary objectives for the sake«ﬁ:ode sharir@\

< Bad cases of inheritance (improper inheritances) are often cured
through composition (containment / aggregation)

Design Rules (cont’d)

<~ Common code and data between classes can be shared by creating
a base class (one of the two primary benefits we can get from

Inheritance) Person

m_age
m_name

N\

| N

Undergraduate Graduate Faculty
m_advisor m_office m_office | |
= m_stipend m_rank Gradu aculty

< Never violate the primary objectives for the sake«ﬁ:ode sharir@\

< Bad cases of inheritance (improper inheritances) are often cured
through composition (containment / aggregation)

Faculty
Office

Design Rules (cont’d)

<~ Common code and data between classes can be shared by creating
a base class (one of the two primary benefits we can get from

Inheritance) Person

m_age
m_name

N\

| N

Undergraduate Graduate Faculty
m_advisor m_office m_office | |
= m_stipend m_rank Gradu aculty

< Never violate the primary objectives for the sake«ﬁ:ode sharir@\

< Bad cases of inheritance (improper inheritances) are often cured
through composition (containment / aggregation)

Faculty This is referred to as the HAS-A relationship.
Office| | It operates in the form of delegation.

25-39

Dubious Examples of Inheritance

< Taken from Deitel & Deitel, C: How to program, p. 736

Dubious Examples of Inheritance

< Taken from Deitel & Deitel, C: How to program, p. 736

class Point {
public:
Point(double x=0, double y=0);
protected:
double x, y;

};

Dubious Examples of Inheritance
< Taken from Deitel & Deitel, C: How to program, p. 736

class Point {

public:
Point(double x=0, double y=0);

protected:
double x, y;
};

class Circle: public Point {
public:

Circle(double x=0, double y=0, double radius=0);
void display() const;

private:
double radius;

b

Dubious Examples of Inheritance
< Taken from Deitel & Deitel, C: How to program, p. 736

class Point {
public:
Point(double x=0, double y=0); void Circle::display() {
protected: cout << "Center =" <<c.x<<", " <<cy
double x, y; << "]; Radius =" << radius;

};

class Circle: public Point {

public:
Circle(double x=0, double y=0, double radius=0);
void display() const;

private:
double radius;

b

Dubious Examples of Inheritance
< Taken from Deitel & Deitel, C: How to program, p. 736

class Point {
public:
Point(double x=0, double y=0); void Circle::display() {
protected: cout << "Center =" <<c.x<<", " <<cy
double x, y; << "]; Radius =" << radius;

};

class Circle: public Point {
public:
Circle(double x=0, double y=0, double radius=0);
void display() const;
private:
double radius;
};
< Design rationale: A circle is a type of point, with common data. The
radius of a circle iIs zero or approaching zero. ... Purely mathematical!

Dubious Examples of Inheritance
< Taken from Deitel & Deitel, C: How to program, p. 736

class Point {
public:
Point(double x=0, double y=0); void Circle::display() {
protected: cout << "Center =" <<c.x<<", " <<cy
double x, y; << "]; Radius =" << radius;

};

class Circle: public Point {

public:
Circle(double x=0, double y=0, double radius=0);
void display() const;

private:

double radius;
};
< Design rationale: A circle Is a type of point, with common data. The
radius of a circle iIs zero or approaching zero. ... Purely mathematical!

< Critiques: A circle is not a point. Instead, a circle has a point
corresponding to Its center

Dubious Examples of Inheritance
< Taken from Deitel & Deitel, C: How to program, p. 736

class Point {
public:
Point(double x=0, double y=0); void Circle::display() {
protected: cout << "Center =" <<c.x<<", " <<cy
double x, y; << "]; Radius =" << radius;

};

class Circle: public Point {

public:
Circle(double x=0, double y=0, double radius=0);
void display() const;

private:
double radius;

};
< Design rationale: A circle Is a type of point, with common data. The
radius of a circle iIs zero or approaching zero. ... Purely mathematical!

< Critiques: A circle is not a point. Instead, a circle has a point
corresponding to its center. Substitutability: Can a circle be used
as a point in constructing the four corners of a rectangle?

Dubious Examples of Inheritance
< Taken from Deitel & Deitel, C: How to program, p. 736

class Point {
public:
Point(double x=0, double y=0); void Circle::display() {
protected: cout << "Center =" <<c.x<<", " <<cy
double x, y; << "]; Radius =" << radius;

};

class Circle: public Point {

public:
Circle(double x=0, double y=0, double radius=0);
void display() const;

private:
double radius;

};
< Design rationale: A point iIs a type of circle, with common data, when
the radius of a circle Is approaching zero. ... Purely mathematical!

< Critiques: A circle is not a point. Instead, a circle has a point
corresponding to its center. Substitutability: Can a circle be used
as a point in constructing the four corners of a rectangle? Can a
circle be used as the center of another circle?

Some Other Dubious Examples

< Ex 1: A stack derived from a linked list

Some Other Dubious Examples

<+ EX 1: A stack derived from a linked list What are the problems?

Some Other Dubious Examples

<+ EX 1: A stack derived from a linked list What are the problems?

& This stack can then be operated as a linked list, the
mechanism of a stack would be completely broken.

Some Other Dubious Examples

<+ EX 1: A stack derived from a linked list What are the problems?

& This stack can then be operated as a linked list, the
mechanism of a stack would be completely broken.

& |f you try to turn off the insert()/delete() interface that could
manipulate entries in any order, you basically make the Stack
class different from the LinkList base class in terms of

operations.

Some Other Dubious Examples

<+ EX 1: A stack derived from a linked list What are the problems?

& This stack can then be operated as a linked list, the
mechanism of a stack would be completely broken.

& |f you try to turn off the insert()/delete() interface that could
manipulate entries in any order, you basically make the Stack
class different from the LinkList base class in terms of

operations. Client codes break!

Some Other Dubious Examples

<+ EX 1: A stack derived from a linked list What are the problems?

& This stack can then be operated as a linked list, the
mechanism of a stack would be completely broken.

& |f you try to turn off the insert()/delete() interface that could
manipulate entries in any order, you basically make the Stack
class different from the LinkList base class in terms of
operations. Client codes break! A Stack IS-NOT a LinkList.

Some Other Dubious Examples

<+ EX 1: A stack derived from a linked list What are the problems?

& This stack can then be operated as a linked list, the
mechanism of a stack would be completely broken.

& |f you try to turn off the insert()/delete() interface that could
manipulate entries in any order, you basically make the Stack
class different from the LinkList base class in terms of
operations. Client codes break! A Stack IS-NOT a LinkList.

<+ Ex 2: A file pathname class derived from a string class

Some Other Dubious Examples

<+ EX 1: A stack derived from a linked list What are the problems?

& This stack can then be operated as a linked list, the
mechanism of a stack would be completely broken.

& |f you try to turn off the insert()/delete() interface that could
manipulate entries in any order, you basically make the Stack
class different from the LinkList base class in terms of
operations. Client codes break! A Stack IS-NOT a LinkList.

<+ Ex 2: A file pathname class derived from a string class

Nnto- athn o IC indoaad Nntad hyy a ofrlnm I |+ 'I' 1Ic 0
||ULC (1 |J(1LIIII(1IIIC 1J |||UCCU ||||'J|C|||C||LCU Uy ||||U, MU iItLioQA

special string that cannot be longer than 32 characters

Some Other Dubious Examples

<+ EX 1: A stack derived from a linked list What are the problems?

& This stack can then be operated as a linked list, the
mechanism of a stack would be completely broken.

& |f you try to turn off the insert()/delete() interface that could
manipulate entries in any order, you basically make the Stack
class different from the LinkList base class in terms of
operations. Client codes break! A Stack IS-NOT a LinkList.

<+ Ex 2: A file pathname class derived from a string class

Nnto- athn o IC indoaad Nniad hyv n ofrlnm I |+ 'I' 1Ic 0
||ULC (1 |J(1LIIII(1IIIC 19 |||UCCU ||||'J|C|||C||LCU Uy ao ||U, MU ILIo A

special string that cannot be longer than 32 characters
< Design rule: The derived class extends the base class

/ base class \
/ derived class \

Some Other Dubious Examples

<+ EX 1: A stack derived from a linked list What are the problems?

& This stack can then be operated as a linked list, the
mechanism of a stack would be completely broken.

& |f you try to turn off the insert()/delete() interface that could
manipulate entries in any order, you basically make the Stack
class different from the LinkList base class in terms of
operations. Client codes break! A Stack IS-NOT a LinkList.

<+ Ex 2: A file pathname class derived from a string class

Nnto- athn o IC indoaad Nntad hyv/ 2 ctrin hiit 1t 1c n
||ULC (1 |J(1LIIII(1IIIC 1J |||UCCU ||||'J|C|||C||LCU Uy A DL"”U, MUl 1L Q Aa

special string that cannot be longer than 32 characters

< Design rule: The derived class extends the base class, not the other
way around. specialization

/ base class\ \ b\y(ass

/ derived class \ \de((ved\lass/

Points to Consider

To design a Shape inheritance hierarchy

Points to Consider

To design a Shape inheritance hierarchy
<~ What are the common operations you want to perform on all Shapes

Points to Consider

To design a Shape inheritance hierarchy

<~ What are the common operations you want to perform on all Shapes

<~ What other kinds of Shapes might you use in your application?

(Triangle, Circle, Polygon, Ellipse, Square, Rectangle Rhombus,
Pentagon, ...) Circle-Ellipse Square-Rectangle

Points to Consider

To design a Shape inheritance hierarchy
<~ What are the common operations you want to perform on all Shapes

<~ What other kinds of Shapes might you use in your application?
(Triangle, Circle, Polygon, Ellipse, Square, Rectangle Rhombus,
Pentagon, ...) Circle-Ellipse Square-Rectangle

<~ Why do you need a Rectangle class as the base class of a Square?

Points to Consider

To design a Shape inheritance hierarchy

<~ What are the common operations you want to perform on all Shapes

<~ What other kinds of Shapes might you use in your application?
(Triangle, Circle, Polygon, Ellipse, Square, Rectangle Rhombus,
Pentagon, ...) Circle-Ellipse Square-Rectangle

<~ Why do you need a Rectangle class as the base class of a Square?

< Can a Square substitute for a Rectangle?

Points to Consider

To design a Shape inheritance hierarchy
<~ What are the common operations you want to perform on all Shapes

<~ What other kinds of Shapes might you use in your application?
(Triangle, Circle, Polygon, Ellipse, Square, Rectangle Rhombus,
Pentagon, ...) Circle-Ellipse Square-Rectangle

<~ Why do you need a Rectangle class as the base class of a Square?

< Can a Square substitute for a Rectangle?

< A Rhombus is four-sided, like a Rectangle, so should Rectangle
derive from Rhombus?

Points to Consider

To design a Shape inheritance hierarchy
What are the common operations you want to perform on all Shapes

What other kinds of Shapes might you use in your application?
(Triangle, Circle, Polygon, Ellipse, Square, Rectangle Rhombus,
Pentagon, ...) Circle-Ellipse Square-Rectangle

Why do you need a Rectangle class as the base class of a Square?

Can a Square substitute for a Rectangle?

A Rhombus is four-sided, like a Rectangle, so should Rectangle
derive from Rhombus?

Should you have a base class for all four-sided objects?

Points to Consider

To design a Shape inheritance hierarchy
What are the common operations you want to perform on all Shapes

What other kinds of Shapes might you use in your application?
(Triangle, Circle, Polygon, Ellipse, Square, Rectangle Rhombus,
Pentagon, ...) Circle-Ellipse Square-Rectangle

Why do you need a Rectangle class as the base class of a Square?

Can a Square substitute for a Rectangle?

A Rhombus is four-sided, like a Rectangle, so should Rectangle
derive from Rhombus?

Should you have a base class for all four-sided objects?
Should you have another base class for all five-sided objects?

Points to Consider

To design a Shape inheritance hierarchy
What are the common operations you want to perform on all Shapes

What other kinds of Shapes might you use in your application?
(Triangle, Circle, Polygon, Ellipse, Square, Rectangle Rhombus,
Pentagon, ...) Circle-Ellipse Square-Rectangle

Why do you need a Rectangle class as the base class of a Square?

Can a Square substitute for a Rectangle?

A Rhombus is four-sided, like a Rectangle, so should Rectangle
derive from Rhombus?

Should you have a base class for all four-sided objects?
Should you have another base class for all five-sided objects?

Should you have a general base class for polygons with the number
of sides as an attribute?

Points to Consider

To design a Shape inheritance hierarchy
What are the common operations you want to perform on all Shapes

What other kinds of Shapes might you use in your application?
(Triangle, Circle, Polygon, Ellipse, Square, Rectangle Rhombus,
Pentagon, ...) Circle-Ellipse Square-Rectangle

Why do you need a Rectangle class as the base class of a Square?

Can a Square substitute for a Rectangle?

A Rhombus is four-sided, like a Rectangle, so should Rectangle
derive from Rhombus?

Should you have a base class for all four-sided objects?
Should you have another base class for all five-sided objects?

Should you have a general base class for polygons with the number
of sides as an attribute?

Will your program perform geometric searches to identify objects?. ,,

Summary

Summary

Undergraduate

m_advisor
m__tuition

Undergraduate

Graduate

m_advisor
m__tuition

m_stipend

Summary

Summary

Student

m_home
m__courses

Undergraduate Graduate

m_advisor m_stipend
m__tuition

Summary

Student

m_home
m__courses

4&

]]
Undergraduate Graduate
m_advisor m_stipend
m__tuition

Student

m_home

m_courses

7

Summary

Undergraduate

Graduate

Faculty

m_advisor m_stipend

m__tuition

m_salary
m_rank

Student

m_home

m_courses

7

Summary

Undergraduate

Graduate

Faculty

m_advisor m_stipend

m__tuition

m_salary
m_rank

ResidenceManager

m_residences

Summary

Student

m_home

m_courses

7

Undergraduate

Graduate

Faculty Staff

m_advisor m_stipend

m__tuition

m_salary | |m_wage
m_rank m_job

ResidenceManager

m_residences

Summary

Student

m_home

m_courses

7

Undergraduate

Graduate

Faculty Staff

m_advisor m_stipend

m__tuition

m_salary | |m_wage
m_rank m_job

T

ResidenceManager

m_residences

Summary

Student

m_home

m_courses

7

Employee

m_ office
m_department

Undergraduate

Graduate

Faculty Staff

m_advisor m_stipend

m__tuition

m_salary | |m_wage
m_rank m_job

T

ResidenceManager

m_residences

Summary

Student

m_home

m_courses

Employee

m_ office
m_department

7

Undergraduate

Graduate

Faculty Staff

m_advisor m_stipend

m__tuition

m_salary | |m_wage
m_rank m_job

T

ResidenceManager

m_residences

Summary

Person

m_age
m_name

Student

m_home

m_courses

Employee

m_ office
m_department

7

Undergraduate

Graduate

Faculty Staff

m_advisor m_stipend

m__tuition

m_salary | |m_wage
m_rank m_job

T

ResidenceManager

m_residences

Summary

Person

m_age
m_name

4&

|
Student

m_home

m_courses

Employee

m_ office
m_department

7

Undergraduate

Graduate

Faculty Staff

m_advisor m_stipend

m__tuition

m_salary | |m_wage
m_rank m_job

T

ResidenceManager

m_residences

Summary

Course

A

Person

m_age
m_name

4&

|
Student

m_home

——$m_courses

Employee

m_ office
m_department

7

Undergraduate

Graduate

Faculty Staff

m_advisor m_stipend

m__tuition

m_salary | |m_wage
m_rank m_job

T

ResidenceManager

m_residences

Course

A

Summary

Person

m_age
m_name

4&

|
Student

m_home

——$m_courses

7

Employee
m_ office

Department

m_department

Undergraduate

Graduate

Faculty Staff

m_advisor m_stipend

m__tuition

m_salary | |m_wage
m_rank m_job

T

ResidenceManager

m_residences

Course

A

Summary

Person

m_age
m_name

Department

4&

|
Student

m_home

——$m_courses

Employee

m_ office
m_department

7

Undergraduate

Graduate

Faculty Staff

m_advisor m_stipend

m__tuition

m_salary | |m_wage
m_rank m_job

T

ResidenceManager
m_residences

CampusResidence

m_rent
m_roomMates

Course

A

Summary

Person

m_age
m_name

Department

4&

|
Student

m_home

——$m_courses

7

Employee

m_ office
m_department

Undergraduate

Graduate

Faculty Staff

m_advisor m_stipend

m__tuition

m_salary | |m_wage
m_rank m_job

T

ResidenceManager
m_residences

CampusResidence Office

m_rent m_IPAddress

m_roomMates

25-43

Course

A

Summary

Person

m_age
m_name

4&

|
Student

m_home

——$m_courses

7

Employee
m_ office

m_department

Undergraduate

Graduate

Faculty Staff

m_advisor

m_stipend

m__tuition

m_salary | |m_wage
m_rank m_job

T

Department

ResidenceManager

Residence

m_residences

m_location
m_phoneExt

CampusResidence

Office

m_rent
m_roomMates

m_ IPAddress

25-43

Course

A

Summary

Person

m_age
m_name

4&

|
Student

m_home

——$m_courses

7

Employee
m_ office

m_department

Undergraduate

Graduate

Faculty Staff

m_advisor

m_stipend

m__tuition

m_salary | |m_wage
m_rank m_job

T

Department

ResidenceManager

Residence

m_residences

m_location
m_phoneExt

Z}

CampusResidence

Office

m_rent
m_roomMates

m_ IPAddress

25-43

Course

A

Summary

Person

m_age
m_name

4&

|
Student

m_home

——$m_courses

7

Employee
m_ office

m_department

Undergraduate

Graduate

Faculty Staff

m_advisor

m_stipend

m__tuition

m_salary | |m_wage
m_rank m_job

T

Department

ResidenceManager

Residence

m_residences

Im location

m_phoneExt

Z}

CampusResidence

Office

m_rent
m_roomMates

m_ IPAddress

25-43

Course

A

Summary

Person

m_age
m_name

4&

|
Student

m_home

——$m_courses

7

Employee
m_office e

Department

m_department

Undergraduate

Graduate

Faculty Staff

m_advisor

m_stipend

m__tuition

m_salary | |m_wage
m_rank m_job

T

ResidenceManager

Residence

m_residences

| m_location
m_phoneExt

Z}

CampusResidence

Office

m_rent
m_roomMates

m_ IPAddress

25-43

Summary

Person

Course

A

m_age
m_name

4&

|
Student

m_home

——$m_courses

7

Employee
m_office e

Department

m_department

Undergraduate

Graduate

Faculty Staff

m_advisor

m_stipend

m__tuition

m_salary | |m_wage
m_rank m_job

T

Residence

ResidenceManager
m_residences

| m_location
m_phoneExt

Z}

CampusResidence

Office

m_rent

eM_roomMates

m_ IPAddress

25-43

Summary

Person

Course

A

m_age
m_name

4&

|
Student

_home
m__courses

4&

Employee
m_office e

Department

m_department

Undergraduate

Graduate

Faculty Staff

m_advisor
m__tuition

m_stipend

m_salary | |m_wage
m_rank m_job

T

Residence

ResidenceManager
m_residences

Im location

m_phoneExt

Z}

_|CampusResidence

Office

m_rent

eM_roomMates

m_ IPAddress

25-43

