
The Big ThreeThe Big Three

C Obj O i d P iC++ Object Oriented Programming
Pei-yih Ting

NTOUCS

20-1

Contents

 Destructor

 Copy constructor Copy constructor

 Assignment operator

 Move constructor (C++11)

 Move assignment operator (C++11) Move assignment operator (C++11)

 The managed pointer

20-2

Introduction
 When the class has the functionality of resource management, it is very likely

that the destructor (dtor), the copy constructor (copy ctor), and the assignment
hoperator occur together.

 Resource management: ex.
class Account {

i

called the BIG 3

public:
Account(const char *name, const char *phone, const char *address);
~Account();
….

private:
char *m_name;
char *m_phone;
char *m address; remote ownership_ ;

};
Account::Account(const char *name, const char *phone, const char *address) {

m_name = new char[strlen(name)+1]; strcpy(m_name, name);
h h [t l (h)+1] t (h h)m_phone = new char[strlen(phone)+1]; strcpy(m_phone, phone);

m_address = new char[strlen(address)+1]; strcpy(m_address, address);
}
Account::~Account() {

20-3

Account:: Account() {
delete[] m_name; delete[] m_phone; delete[] m_address;

}
dtor

Copy Constructor (copy ctor)py (py)
 What is a copy constructor? X(X&)

Account(Account &src); and Account(const Account &src);Account(Account &src); and Account(const Account &src);
 When is the copy constructor invoked?

C 1 A t t 1("S P "
object being copied

Case 1:Account customer1("Sean Pan",
"123-4567890", "1234 Sunset Blvd.");

Account customer2(customer1);Account customer2(customer1);
Account customer3 = customer1;

Case 2: void fun1(Account customer) {() {
…

}
C 3 A t f 2() {Case 3: Account fun2() {

Account x;
…

20-4

return x;
}

Copy Constructorpy
 If copy ctor is not defined, compiler will synthesize one for you.
 This synthesized copy ctor copies all the bits of the object This synthesized copy ctor copies all the bits of the object.
 For many cases this implementation is good but for a class which

allocates memory or handles other resources itself this usually leadsallocates memory or handles other resources itself, this usually leads
to errors. A trap to dangling reference.

customer 1 customer 2shallow copy
m_name
m_phone

m_name
m_phone12 bytes

shallow copy

m_address m_address
y

"Sean Pan"
"123 4567890"Is this really we want? ?

20-5

"123-4567890"
"1234 Sunset Blvd."

Is this really we want? ?

Dangling Referenceg g
 Consider the following codes

void main() {
Account customer("Sean Pan", "123-4567890", "1234 sunset Blvd.");

…
f (t)fun(customer);

…
customer.display(); // show all the customer information

}

void fun(Account customerLocal) {

}

….
} // the dtor would deallocate the memory belongs to customerLocal
// however, these memory blocks are the same as those of customer

 The statement fun(customer) would cause dangling reference and
the statement customer.display() would access memory blocks
previously belonged to this customer object and display some

20-6

previously belonged to this customer object and display some
strange contents.

Unexpected Releasep
 Sometimes, the resource might be unexpectedly released, ex.

void main() {
ifstream infile("input.dat");

void readFile(ifstream is) {
…

}…

readFile(infile);
…

}

VC 2010 does not allow this…
}

 This is a complex problem. The program will have runtime error.
Why does the error occurs? You won't be able to correct this by
supplying a copy constructor for ifstream because it is a library class.
The only thing you can easily do is not invoking the copy ctor by

i th t ith f

20-7

passing the parameter with reference.

Example Copy Constructorp py
Account::Account(const Account &src) {

m name = new char[strlen(src.m name)+1]; _ [(_)];
strcpy(m_name, src.m_name);
m_phone = new char[strlen(src.m_phone)+1];
t (h h)strcpy(m_phone, src.m_phone);

m_address = new char[strlen(src.m_address)+1];
strcpy(m_address, src.m_address);

}
 Copy ctor is a kind of ctor. You should use initialization list

whenever possible Especially you should invoke the base classwhenever possible. Especially, you should invoke the base class
copy ctor if it is a derived class. You should invoke the component
class copy ctor if it contains a member object.py j

 In a copy ctor, you are initiating an object from another object.
The memory space for the object is allocated by the system.

20-8

 If you want to forbid public usage of call-by-value semantics of an
object, you can declare a private copy ctor for that class.

Member Object and Base Classj
 Copy constructor is a constructor, member objects and base class

must be initialized through initialization listmust be initialized through initialization list
 For example:

class Derived: public Base { Note:
Compiler adds Base() invocation

automaticallyclass Derived: public Base {
public:

…
D i d(t D i d &)

Note:
Derived::Derived(const Derived &src)

: m_obj(src.m_obj) {

automatically

Derived(const Derived &src);
…

private:

…
}

Derived::Derived(const Derived &src) {
Component m_obj;

};

Derived::Derived(const Derived &src) {
…

}

Compiler adds Base(), m_obj()
invocations automatically

Derived::Derived(const Derived &src)
: Base(src), m_obj(src.m_obj) {

…

20-9

You have to chain manually.
Compiler supplied copy ctor also chains correctly.

}

Assignment Operatorg p
 When/where is the assignment operator invoked?

Account customer1("abc" "1234" "ABC street");Account customer1(abc , 1234 , ABC street);
Account customer2, customer3; // assume default ctor defined
customer2  customer1;
customer2.operator(customer1);
customer3  customer2  customer1;

N t A t t 2 t 1

 What is its prototypes?

 Note: Account customer2 = customer1;
does not invoke the assignment operator

 What is its prototypes?
Account &operator=(const Account &rhs);

No extra copy ctor invoked
Designed for continuously assignment

customer3 operator(customer2 operator(customer1));

20-10

customer3.operator (customer2.operator (customer1));
Note: this does not contradict

the rule that reference does not bind to temporary object

Assignment Operatorg p
 Again, if the class being designed allocates its own resources. It is

quite often to see the dtor, copy ctor, and the assignment operator q , py , g p
occur together.

 There are seven important things to do in an assignment operator
Account &Account::operator(const Account &rhs)
{

if (&rhs == this) return *this;
Detecting self assignments

 () ;
delete[] m_name; delete[] m_phone; delete[] m_address;
m_name = new char[strlen(rhs.m_name)+1];
m phone = new char[strlen(rhs m phone)+1];




 m_phone new char[strlen(rhs.m_phone)+1];
m_address = new char[strlen(rhs.m_address)+1];
strcpy(m_name, rhs.m_name);
strcpy(m phone rhs m phone);



 strcpy(m_phone, rhs.m_phone);
strcpy(m_address, rhs.m_address);
// invoke the base class assignment operator
// i k h bj i






20-11

// invoke the component object assignment operator
return *this;

}




Assignment Operatorg p
 You can declare the assignment operator in the private section to

forbid public usage of the assignment semantics.
 If there is a reference variable or a const variable defined in the class,

th i t d fi th i t tthere is no way to define the assignment operator.

 Usually the assignment operator repeats the codes both in the copy Usually, the assignment operator repeats the codes both in the copy
ctor and the dtor. It is common to prepare common functions to be
called in assignment operator, copy ctor and the dtor.g p , py

 The Big 3 are never inherited because based class functions are not
sufficient to initialize, copy, or destroy a derived instance.

20-12

 Three make a team. Do not forget any one of them.

Managed Pointerg
 template class auto_ptr<T>: #include <memory>

auto ptr<Fred> acts like a Fred* except that it owns theauto_ptr<Fred> acts like a Fred* except that it owns the
referent (the Fred object)

1 Declare a managed pointer with NULL value1. Declare a managed pointer with NULL value
auto_ptr<Fred> ptr;

2. Invoke the assignment operator later2. Invoke the assignment operator later
ptr = auto_ptr<Fred>(new Fred());

3. Construct a managed pointer with a pointer
ptr now owns this
new Fred objectg p p

auto_ptr<Fred> ptr(new Fred()); or
auto_ptr<Fred> ptr = new Fred();

new Fred object

4. Can be used anywhere like a Fred* pointer
ptrservices(); or (*ptr).services();

20-13

5. Retrieve the raw Fred pointer
Fred *ptrRaw = ptr.get();

Managed Pointer (cont’d)g ()
6. Copy ctor is implemented with ownership transfer (surprise!!)

auto ptr<Fred> newPtr = ptr; or newPtr now owns the Fred_p p ;
auto_ptr<Fred> newPtr(ptr);

7. When this object goes out of scope, its

newPtr now owns the Fred
object originally owned by
ptr, ptr will point to the same
object afterwards but will not7. When this object goes out of scope, its

dtor will delete the owned Fred object.
8. What about an explicit delete?

object afterwards but will not
own it anymore.

p
delete ptr; // syntax error, do not new an auto_ptr, do not keep
the raw Fred pointer, pass by reference to a function

9. If you copy the managed pointer from another managed pointer
without ownership to the real object, the new managed pointer
does not have ownership to the real object If you construct adoes not have ownership to the real object. If you construct a
new managed pointer with a raw pointer twice, both objects have
ownership. Fortunately, delete in its dtor will only succeed once.
B t i i t ith t hi t th l bj t i lik l

20-14

But using a pointer without ownership to the real object is likely
to be a dangling reference like a raw pointer.

Managed Pointer (cont’d)g ()
 auto_ptr is part of C++98, C++03 and is more commonly called a

smart pointer do not get confused with operator-> overloadingsmart pointer, do not get confused with operator-> overloading
 auto_ptr implements copy and assignment with implicit ownership

transfer due to the lack of move semantics in C++98/03.transfer due to the lack of move semantics in C 98/03.
The compiler allows you to pass an auto_ptr by value to a function,
the original auto_ptr would lose the ownership and  the managed
resource is going to be deleted as the function exits unless another
auto_ptr is returned back.  auto_ptr cannot manage an array and
 cannot be used in a container cannot be used in a container.

 Do NOT use auto_ptr!!
 The follo ing smart pointers are designed to replace it The following smart pointers are designed to replace it

 boost::shared_ptr, boost::scope_ptr, boost::shared_array,
boost::scope array boost::weak ptrboost::scope_array, boost::weak_ptr

 C++11: std::shared_ptr, std::weak_ptr, std::unique_ptr
20-15

