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 The interface between client codes and server codes is described in 
the specification.  When either side of codes does not follow the 
specification, some errors occur.
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 in which environment the server function is invoked



Server Handles Errors
const int kStackSize = 3;
const int kEmptyStack = -1; p y ;
class StackT {
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Server Handles Errors
const int kStackSize = 3;
const int kEmptyStack = -1; void StackT::Push(int element) {p y ;
class StackT {
public:

St kT()

if (fTop+1 == kStackSize)
cout << "Error! Stack full. (" 

<< element << ")\n";
StackT();
void Push(int element);
int Pop();

else
fArray[++fTop] = element;

}
private:

int fArray[kStackSize];
int fTop;

}

int StackT::Pop() {
int fTop;

};
if (fTop == kEmptyStack) {

cout << "Error! Stack empty.\n";
return kEmptyStack; // meaningless

StackT::StackT():fTop(kEmptyStack) {
}

return kEmptyStack; // meaningless
}
else
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return fArray[fTop--];
}
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Server Handles Errors (cont’d)( )
void main() {

StackT stack;StackT stack;
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2. Server often handles errors uniformly and
somewhat blindly.
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Error! Stack empty.
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somewhat blindly.



Client Handles Errors
bool StackT::Push(int element) {

if (fTop+1 == kStackSize)( p )
return true;

else {
fArray[++fTop] = element;
return false;

}}
}
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Client Handles Errors
bool StackT::Push(int element) {

if (fTop+1 == kStackSize)
int StackT::Pop(bool &error) {

if (fTop == kEmptyStack) {( p )
return true;

else {

error = true;  // type 1
return kEmptyStack; // meaningless

}fArray[++fTop] = element;
return false;

}

}
else if (bLocked) {

error = true;  // type 2
}

}
return kEmptyStack; // meaningless

}
else {else {
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return fArray[fTop--];

}
}
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Client Handles Errors
bool StackT::Push(int element) {

if (fTop+1 == kStackSize)
int StackT::Pop(bool &error) {

if (fTop == kEmptyStack) {( p )
return true;

else {

error = true;  // type 1
return kEmptyStack; // meaningless

}fArray[++fTop] = element;
return false;

}

}
else if (bLocked) {

error = true;  // type 2
}

}
return kEmptyStack; // meaningless

}
else {void main() { else {

error = false;
return fArray[fTop--];

() {
StackT stack;
bool error;
int value; }

}

int value;

error = stack.Push(1);
if (error)
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if (error)
cout << "1 is not 

pushed in\n";
error = stack.Push(2);
if (error) cout << “2 is not pushed in\n";



Client Handles Errors (cont’d)( )
error = stack.Push(3);
if (error) cout << "3 is not pushed in\n";

value = stack.Pop(error);
if (!error)( ) p

error = stack.Push(4);
if (error) cout << "4 is not pushed in\n";

if (!error)
cout << value << '\n';

else( ) p ;

value = stack.Pop(error);
if (!error)

cout << "The 3rd pop failed!\n";

value = stack Pop(error);if (!error)
cout << value << '\n';

else

value  stack.Pop(error);
if (!error)

cout << value << '\n';
cout << "The first pop failed!\n";

value = stack Pop(error);

else
cout << "The 4th pop failed!\n";

}value  stack.Pop(error);
if (!error)

cout << value << '\n';

}
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Client Handles Errors (cont’d)( )
error = stack.Push(3);
if (error) cout << "3 is not pushed in\n";

value = stack.Pop(error);
if (!error)( ) p

error = stack.Push(4);
if (error) cout << "4 is not pushed in\n";

if (!error)
cout << value << '\n';

else( ) p ;

value = stack.Pop(error);
if (!error)

cout << "The 3rd pop failed!\n";

value = stack Pop(error);if (!error)
cout << value << '\n';

else

value  stack.Pop(error);
if (!error)

cout << value << '\n';
cout << "The first pop failed!\n";

value = stack Pop(error);

else
cout << "The 4th pop failed!\n";

}value  stack.Pop(error);
if (!error)

cout << value << '\n';

}

Output:
4 is not pushed in
3
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else
cout << "The 2nd pop failed!\n";

Output: 2
1
The 4th pop failed!



Client Handles Errors (cont’d)( )
 Problems:

1 It does not know where and why exactly the error occurs in the1. It does not know where and why exactly the error occurs in the
server codes.
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 It’s possible that the server code passes some exact error types (the 
error code) out such that the client code can handle different errors.
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 In the following example, we add two more interface methods to the 
StackT class: IsFull(), IsEmpty() so that the behaviors of Push() 
and Pop() are simplified.



Helping the Clientp g
 We can add two functions to the StackT class (the server)
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 We can add two functions to the StackT class (the server)

bool StackT::IsEmpty() const {bool StackT::IsEmpty() const {
return fTop == kEmptyStack;

}
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bool StackT::IsEmpty() const {bool StackT::IsEmpty() const {
return fTop == kEmptyStack;
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bool StackT::IsFull() const {

return fTop+1 == kStackSize;
}

 In the server codes: NOT
handling errors any more
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Helping the Clientp g
 We can add two functions to the StackT class (the server)

bool StackT::IsEmpty() const {bool StackT::IsEmpty() const {
return fTop == kEmptyStack;

}
bool StackT::IsFull() const {

return fTop+1 == kStackSize;
}

 In the server codes: NOT
handling errors any more
void StackT::Push(int element) {

if (!IsFull())
fArray[++fTop] = element;

}
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Helping the Clientp g
 We can add two functions to the StackT class (the server)

bool StackT::IsEmpty() const {bool StackT::IsEmpty() const {
return fTop == kEmptyStack;

}
bool StackT::IsFull() const {

return fTop+1 == kStackSize;
}

 In the server codes: NOT

int StackT::Pop() {
if (!IsEmpty())

handling errors any more
void StackT::Push(int element) {

return fArray[fTop--];
else 

k k // i l

if (!IsFull())
fArray[++fTop] = element;

}
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return kEmptyStack; // meaningless
}

}



Helping the Client (cont’d)p g ( )
 In the client code


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














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Helping the Client (cont’d)p g ( )
 In the client code

void main() {void main() {
StackT stack;

















}
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Helping the Client (cont’d)p g ( )
 In the client code

void main() {void main() {
StackT stack;

if (!stack.IsFull())
stack.Push(1);

elseelse
cout << "Deal with push error\n";









}
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Helping the Client (cont’d)p g ( )
 In the client code

void main() {void main() {
StackT stack;

if (!stack.IsFull())
stack.Push(1);

elseelse
cout << "Deal with push error\n";

if (! t k I E t ())if (!stack.IsEmpty())
cout << stack.Pop() << '\n';

else
cout << "Deal with pop error\n";

}
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Exceptions vs. assert()p ()
 assert():












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Exceptions vs. assert()p ()
 assert():
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3. Safety-critical programming
The patient will die if the software crashes. / System might be hacked.
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 Three levels:

() h h h ifi i f h assert() statements: those errors that the specification of the 
program excludes.  You don’t want it to be handled automatically 
by your program You don’t want your users see themby your program.  You don t want your users see them.

 if statements: those expected situations that happened normally 
and quite often e g user enter incorrect data file not openedand quite often, e.g. user enter incorrect data, file not opened, …

 try-catch-throw exceptions: those expected or unexpected
it ti th t h d l ( 1 t f 100) di ksituations that happened rarely (say 1 out of 100), e.g. disk access 

errors, … Or, you want to avoid long/ugly error handling codes…

Rule of thumb: if in doubt, use exceptions
Sometimes, there are still practices of using a single goto statement
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to handle all sorts of memory deallocation after program fails.  In
general, this mechanism can be replaced by exception handling.
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 An assertion is a statement that must be true for the An assertion is a statement that must be true for the 
function to be correct.

 Three types of assertions: Three types of assertions:
 Preconditions: make sure the assumption holds
 Postconditions: make sure the codes perform the task as 

promisedpromised
Class invariants: make sure some properties always 

h ld t f li thold true for a client
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Postconditions
 An assertion that must be satisfied after execution of the function.
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Postconditions
 An assertion that must be satisfied after execution of the function.

id St kT Push(i t l t) {void StackT::Push(int element) {
int originalTop = fTop;
assert(!IsFull());assert(!IsFull());
fArray[++fTop] = element;

assert(!IsEmpty() && (fTop == originalTop+1));( p y() ( p g p ));
}
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Postconditions
 An assertion that must be satisfied after execution of the function.

id St kT Push(i t l t) {void StackT::Push(int element) {
int originalTop = fTop;
assert(!IsFull());assert(!IsFull());
fArray[++fTop] = element;

assert(!IsEmpty() && (fTop == originalTop+1));( p y() ( p g p ));
}

int StackT::Pop() {
int originalTop = fTop;
assert(!IsEmpty());
i l fA [fT ]int value = fArray[fTop--];

assert(!IsFull() && (fTop == originalTop-1));
return value;
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return value;
}



Example of Postconditionp
Class DataT {

friend class StackT;
void StackT::Push(int element) {

assert(!IsFull());friend class StackT;
private:

int fData;

assert(!IsFull());
DataT *temp = new DataT(element);
fArray[++fTop] = temp;

DataT(int data);
};
l St kT {

assert(temp!=NULL);
}

class StackT {
public:

StackT();
temp might actually be NULL if 
new operator fails to allocateS ac ();

void Push(int element);
….

new operator fails to allocate 
required memory.

private:
DataT *fArray[kStackSize];
int fTop;

12-19

int fTop;
};



Class Invariants
 A class invariant is a condition that holds true for the entire class.
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Class Invariants
 A class invariant is a condition that holds true for the entire class.
 A class invariant must satisfy two conditions: A class invariant must satisfy two conditions:

1. true at the end of every constructor
2 true at entrance and exit from every public mutator function2. true at entrance and exit from every public mutator function

Note: from the above 
a A class invariant holds only for its client (might not hold at anya. A class invariant holds only for its client (might not hold at any 

particular instant, especially inside any member function)
b. It is assumed that these objects work in a single-threadedb. It is assumed that these objects work in a single threaded 

environment.
 When is an invariant exempt from being true?p g

inside a private member function
 bool StackT::ClassInvariant() {
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() {
return (fTop>=kEmptyStack) && (fTop<kStackSize);

}



Class Invariants (cont’d)( )
 First condition:

StackT::StackT() : fTop(kEmptyStack) {StackT::StackT() : fTop(kEmptyStack) {
assert(ClassInvariant());
}
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Class Invariants (cont’d)( )
 First condition:

StackT::StackT() : fTop(kEmptyStack) {StackT::StackT() : fTop(kEmptyStack) {
assert(ClassInvariant());
}

 Second condition:
void StackT::Push(int element) { void StackT::Pop() {

assert(ClassInvariant());
assert(!IsFull());
fA [++fT ] l t

int value;
assert(ClassInvariant());

fArray[++fTop] = element;
assert(!IsEmpty());
assert(ClassInvariant());

assert(!IsEmpty());
value = fArray[fTop--];
assert(!IsFull());assert(ClassInvariant());

}
assert(!IsFull());
assert(ClassInvariant());
return value;
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Managing Assertionsg g
 Problems of using assertions

1 Many checkings require time program might be sloppy1. Many checkings require time, program might be sloppy
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1 Many checkings require time program might be sloppy1. Many checkings require time, program might be sloppy
2. The abort message should never be seen by the user.  (e.g. the 

annoying MS window’s blue error screen)annoying MS window s blue error screen)
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Managing Assertionsg g
 Problems of using assertions

1 Many checkings require time program might be sloppy1. Many checkings require time, program might be sloppy
2. The abort message should never be seen by the user.  (e.g. the 

annoying MS window’s blue error screen)annoying MS window s blue error screen)
3. These checkings should not be left effective in a released S/W. 

 Use conditional compilation
#define NDEBUG#define _NDEBUG
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Managing Assertionsg g
 Problems of using assertions

1 Many checkings require time program might be sloppy1. Many checkings require time, program might be sloppy
2. The abort message should never be seen by the user.  (e.g. the 

annoying MS window’s blue error screen)annoying MS window s blue error screen)
3. These checkings should not be left effective in a released S/W. 

void StackT::Push(int element) {

 Use conditional compilation
#define NDEBUG

( ) {
#ifndef _NDEBUG
assert(ClassInvariant());

t(!I F ll())#define _NDEBUG

StackT::StackT() : fTop(kEmptyStack) {

assert(!IsFull());
#endif
fArray[++fTop] = element;

#ifndef _NDEBUG
assert(ClassInvariant());

dif

y[ p]
#ifndef _NDEBUG
assert(!IsEmpty());
assert(ClassInvariant());
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#endif
} 

assert(ClassInvariant());
#endif

}



errno in UNIX Environment
#include <string.h>

h * t (i )char * strerror(int errnum);
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errno in UNIX Environment
#include <string.h>

h * t (i )char * strerror(int errnum);
The strerror() function accepts an error number argument errnum
and returns a pointer to the corresponding message string.

e.g. strerror(errno);
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errno in UNIX Environment
#include <string.h>

h * t (i )char * strerror(int errnum);
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e.g. perror("module");  
//    module: error message corresponding to errno



GetLastError() in MS Windows()
LPVOID lpMsgBuf;
FormatMessage( FORMAT MESSAGE ALLOCATE BUFFER |FormatMessage( FORMAT_MESSAGE_ALLOCATE_BUFFER |

FORMAT_MESSAGE_FROM_SYSTEM |
FORMAT MESSAGE IGNORE INSERTS,FORMAT_MESSAGE_IGNORE_INSERTS, 
NULL,
GetLastError(), (),
MAKELANGID(LANG_NEUTRAL,

SUBLANG_DEFAULT), // Default language
(LPTSTR) &lpMsgBuf, 
0, 
NULL ); // Process any inserts in lpMsgBuf. 

// ... 
M B ( NULL (LPCTSTR)l M B f "E " MB OK)
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MessageBox( NULL, (LPCTSTR)lpMsgBuf, "Error", MB_OK);
http://msdn2.microsoft.com/en-us/library/ms681385.aspx


