
AssertionAssertion

C Obj O i d P iC++ Object Oriented Programming
Pei-yih Ting
NTOU CS

12-1

Contents
 Errors
 Error handling in procedural programming language
 Error messages vs. error codes Error messages vs. error codes
 Modifying interface to help the client
 Assertions - make your code prove that it is correct
 Types of assertionsyp

 Preconditions
P t diti Postconditions

Class invariants

12-2

 Conditional compilation and assertions

What is an Error?
 Compile-time error: grammatical errors or typos such that the

compiler cannot translate your program to machine instructions
















12-3



What is an Error?
 Compile-time error: grammatical errors or typos such that the

compiler cannot translate your program to machine instructions
 Run-time error: the running program does not provide its claimed

functionalities














12-3



What is an Error?
 Compile-time error: grammatical errors or typos such that the

compiler cannot translate your program to machine instructions
 Run-time error: the running program does not provide its claimed

functionalities
I t d t i i t (ith i f t ti) Input data is incorrect (either in format or semantics)













12-3



What is an Error?
 Compile-time error: grammatical errors or typos such that the

compiler cannot translate your program to machine instructions
 Run-time error: the running program does not provide its claimed

functionalities
I t d t i i t (ith i f t ti) Input data is incorrect (either in format or semantics)

 The data representations/algorithms are incorrect.










12-3



What is an Error?
 Compile-time error: grammatical errors or typos such that the

compiler cannot translate your program to machine instructions
 Run-time error: the running program does not provide its claimed

functionalities
I t d t i i t (ith i f t ti) Input data is incorrect (either in format or semantics)

 The data representations/algorithms are incorrect.
 The computer resources do not satisfy the program requirements The computer resources do not satisfy the program requirements.

(Not enough memory, disk space, process privilege, i/o
capability,…)









12-3



What is an Error?
 Compile-time error: grammatical errors or typos such that the

compiler cannot translate your program to machine instructions
 Run-time error: the running program does not provide its claimed

functionalities
I t d t i i t (ith i f t ti) Input data is incorrect (either in format or semantics)

 The data representations/algorithms are incorrect.
 The computer resources do not satisfy the program requirements The computer resources do not satisfy the program requirements.

(Not enough memory, disk space, process privilege, i/o
capability,…)

 The employed tools (function libraries, external servers, …) do
not provide required functionalities.







12-3



What is an Error?
 Compile-time error: grammatical errors or typos such that the

compiler cannot translate your program to machine instructions
 Run-time error: the running program does not provide its claimed

functionalities
I t d t i i t (ith i f t ti) Input data is incorrect (either in format or semantics)

 The data representations/algorithms are incorrect.
 The computer resources do not satisfy the program requirements The computer resources do not satisfy the program requirements.

(Not enough memory, disk space, process privilege, i/o
capability,…)

 The employed tools (function libraries, external servers, …) do
not provide required functionalities.

M f h b h h i dMost of the above errors occur when the running program and
environment do not meet the program specification.



12-3



What is an Error?
 Compile-time error: grammatical errors or typos such that the

compiler cannot translate your program to machine instructions
 Run-time error: the running program does not provide its claimed

functionalities
I t d t i i t (ith i f t ti) Input data is incorrect (either in format or semantics)

 The data representations/algorithms are incorrect.
 The computer resources do not satisfy the program requirements The computer resources do not satisfy the program requirements.

(Not enough memory, disk space, process privilege, i/o
capability,…)

 The employed tools (function libraries, external servers, …) do
not provide required functionalities.

M f h b h h i dMost of the above errors occur when the running program and
environment do not meet the program specification.

 The interface between client codes and server codes is described in

12-3

 The interface between client codes and server codes is described in
the specification. When either side of codes does not follow the
specification, some errors occur.

Errors in Procedural Programmingg g
 Functions being called (server codes, utility functions, supporting

functions lower level functions)functions, lower level functions)
int server() {

…error occurring position 1; // first type of error…error occurring position 2; // second type of error…
}













12-4



Errors in Procedural Programmingg g
 Functions being called (server codes, utility functions, supporting

functions lower level functions)functions, lower level functions)
int server() {

…error occurring position 1; // first type of error…error occurring position 2; // second type of error…
}

 Calling functions (client codes, controlling functions, upper level
functions)

… () // fi t ll i tserver(); // first call environment…server(); // second call environment…





12-4

Errors in Procedural Programmingg g
 Functions being called (server codes, utility functions, supporting

functions lower level functions)functions, lower level functions)
int server() {

…error occurring position 1; // first type of error…error occurring position 2; // second type of error…
}

 Calling functions (client codes, controlling functions, upper level
functions)

… () // fi t ll i tserver(); // first call environment…server(); // second call environment…
 Proper error handling depends on the knowledge of both Proper error handling depends on the knowledge of both

 exactly what type of error occurs and


12-4



Errors in Procedural Programmingg g
 Functions being called (server codes, utility functions, supporting

functions lower level functions)functions, lower level functions)
int server() {

…error occurring position 1; // first type of error…error occurring position 2; // second type of error…
}

 Calling functions (client codes, controlling functions, upper level
functions)

… () // fi t ll i tserver(); // first call environment…server(); // second call environment…
 Proper error handling depends on the knowledge of both Proper error handling depends on the knowledge of both

 exactly what type of error occurs and
 i hi h i t th f ti i i k d

12-4

 in which environment the server function is invoked

Server Handles Errors
const int kStackSize = 3;
const int kEmptyStack = -1; p y ;
class StackT {
public:

St kT()





StackT();




















};















12-5





Server Handles Errors
const int kStackSize = 3;
const int kEmptyStack = -1; p y ;
class StackT {
public:

St kT()





StackT();









private:

int fArray[kStackSize];
int fTop;




int fTop;

};















12-5





Server Handles Errors
const int kStackSize = 3;
const int kEmptyStack = -1; p y ;
class StackT {
public:

St kT()





StackT();
void Push(int element);
int Pop();






private:

int fArray[kStackSize];
int fTop;




int fTop;

};





StackT::StackT():fTop(kEmptyStack) {
}







12-5





Server Handles Errors
const int kStackSize = 3;
const int kEmptyStack = -1; void StackT::Push(int element) {p y ;
class StackT {
public:

St kT()

if (fTop+1 == kStackSize)
cout << "Error! Stack full. ("

<< element << ")\n";
StackT();
void Push(int element);
int Pop();

else
fArray[++fTop] = element;

}
private:

int fArray[kStackSize];
int fTop;

}


int fTop;

};





StackT::StackT():fTop(kEmptyStack) {
}







12-5





Server Handles Errors
const int kStackSize = 3;
const int kEmptyStack = -1; void StackT::Push(int element) {p y ;
class StackT {
public:

St kT()

if (fTop+1 == kStackSize)
cout << "Error! Stack full. ("

<< element << ")\n";
StackT();
void Push(int element);
int Pop();

else
fArray[++fTop] = element;

}
private:

int fArray[kStackSize];
int fTop;

}

int StackT::Pop() {
int fTop;

};
if (fTop == kEmptyStack) {

cout << "Error! Stack empty.\n";
return kEmptyStack; // meaningless

StackT::StackT():fTop(kEmptyStack) {
}

return kEmptyStack; // meaningless
}
else

12-5

return fArray[fTop--];
}

Server Handles Errors (cont’d)()
void main() {

StackT stack;StackT stack;
stack.Push(1); stack.Push(2); stack.Push(3); stack.Push(4);





















12-6





Server Handles Errors (cont’d)()
void main() {

StackT stack;StackT stack;
stack.Push(1); stack.Push(2); stack.Push(3); stack.Push(4);
cout << stack.Pop() << '\n'

<< stack.Pop() << '\n'
<< stack.Pop() << '\n'
<< t k P () << "\ "<< stack.Pop() << "\n";

}













12-6





Server Handles Errors (cont’d)()
void main() {

StackT stack;StackT stack;
stack.Push(1); stack.Push(2); stack.Push(3); stack.Push(4);
cout << stack.Pop() << '\n'

<< stack.Pop() << '\n'
<< stack.Pop() << '\n'
<< t k P () << "\ "<< stack.Pop() << "\n";

}

Output:
Error! Stack full. (4)
3

3
2
1

12-6

Error! Stack empty.
-1

Server Handles Errors (cont’d)()
void main() {

StackT stack;StackT stack;
stack.Push(1); stack.Push(2); stack.Push(3); stack.Push(4);
cout << stack.Pop() << '\n'

<< stack.Pop() << '\n'
<< stack.Pop() << '\n'
<< t k P () << "\ "<< stack.Pop() << "\n";

}

Output:
Error! Stack full. (4)
3

Problems:
1. Server does not know the calling environment.

3
2
1

12-6

Error! Stack empty.
-1

Server Handles Errors (cont’d)()
void main() {

StackT stack;StackT stack;
stack.Push(1); stack.Push(2); stack.Push(3); stack.Push(4);
cout << stack.Pop() << '\n'

<< stack.Pop() << '\n'
<< stack.Pop() << '\n'
<< t k P () << "\ "<< stack.Pop() << "\n";

}

Output:
Error! Stack full. (4)
3

Problems:
1. Server does not know the calling environment.

3
2
1

2. Server often handles errors uniformly and
somewhat blindly.

12-6

Error! Stack empty.
-1

somewhat blindly.

Client Handles Errors
bool StackT::Push(int element) {

if (fTop+1 == kStackSize)(p)
return true;

else {
fArray[++fTop] = element;
return false;

}}
}

12-7

Client Handles Errors
bool StackT::Push(int element) {

if (fTop+1 == kStackSize)
int StackT::Pop(bool &error) {

if (fTop == kEmptyStack) {(p)
return true;

else {

error = true; // type 1
return kEmptyStack; // meaningless

}fArray[++fTop] = element;
return false;

}

}
else if (bLocked) {

error = true; // type 2
}

}
return kEmptyStack; // meaningless

}
else {else {

error = false;
return fArray[fTop--];

}
}

12-7

Client Handles Errors
bool StackT::Push(int element) {

if (fTop+1 == kStackSize)
int StackT::Pop(bool &error) {

if (fTop == kEmptyStack) {(p)
return true;

else {

error = true; // type 1
return kEmptyStack; // meaningless

}fArray[++fTop] = element;
return false;

}

}
else if (bLocked) {

error = true; // type 2
}

}
return kEmptyStack; // meaningless

}
else {void main() { else {

error = false;
return fArray[fTop--];

() {
StackT stack;
bool error;
int value; }

}

int value;

error = stack.Push(1);
if (error)

12-7

if (error)
cout << "1 is not

pushed in\n";
error = stack.Push(2);
if (error) cout << “2 is not pushed in\n";

Client Handles Errors (cont’d)()
error = stack.Push(3);
if (error) cout << "3 is not pushed in\n";

value = stack.Pop(error);
if (!error)() p

error = stack.Push(4);
if (error) cout << "4 is not pushed in\n";

if (!error)
cout << value << '\n';

else() p ;

value = stack.Pop(error);
if (!error)

cout << "The 3rd pop failed!\n";

value = stack Pop(error);if (!error)
cout << value << '\n';

else

value stack.Pop(error);
if (!error)

cout << value << '\n';
cout << "The first pop failed!\n";

value = stack Pop(error);

else
cout << "The 4th pop failed!\n";

}value stack.Pop(error);
if (!error)

cout << value << '\n';

}

12-8

else
cout << "The 2nd pop failed!\n";

Client Handles Errors (cont’d)()
error = stack.Push(3);
if (error) cout << "3 is not pushed in\n";

value = stack.Pop(error);
if (!error)() p

error = stack.Push(4);
if (error) cout << "4 is not pushed in\n";

if (!error)
cout << value << '\n';

else() p ;

value = stack.Pop(error);
if (!error)

cout << "The 3rd pop failed!\n";

value = stack Pop(error);if (!error)
cout << value << '\n';

else

value stack.Pop(error);
if (!error)

cout << value << '\n';
cout << "The first pop failed!\n";

value = stack Pop(error);

else
cout << "The 4th pop failed!\n";

}value stack.Pop(error);
if (!error)

cout << value << '\n';

}

Output:
4 is not pushed in
3

12-8

else
cout << "The 2nd pop failed!\n";

Output: 2
1
The 4th pop failed!

Client Handles Errors (cont’d)()
 Problems:

1 It does not know where and why exactly the error occurs in the1. It does not know where and why exactly the error occurs in the
server codes.







12-9



Client Handles Errors (cont’d)()
 Problems:

1 It does not know where and why exactly the error occurs in the1. It does not know where and why exactly the error occurs in the
server codes.

2 It ft h dl if l d h t bli dl2. It often handles errors uniformly and somewhat blindly.






12-9



Client Handles Errors (cont’d)()
 Problems:

1 It does not know where and why exactly the error occurs in the1. It does not know where and why exactly the error occurs in the
server codes.

2 It ft h dl if l d h t bli dl2. It often handles errors uniformly and somewhat blindly.
 Let the server handle the error usually can reduce the overall code

i H it i l ibl h th h dli th dsize. However, it is only possible when the error handling methods
for all usages are exactly the same. (perform the factoring operation)





12-9



Client Handles Errors (cont’d)()
 Problems:

1 It does not know where and why exactly the error occurs in the1. It does not know where and why exactly the error occurs in the
server codes.

2 It ft h dl if l d h t bli dl2. It often handles errors uniformly and somewhat blindly.
 Let the server handle the error usually can reduce the overall code

i H it i l ibl h th h dli th dsize. However, it is only possible when the error handling methods
for all usages are exactly the same. (perform the factoring operation)

 It’s possible that the client code passes some environment identifying It s possible that the client code passes some environment identifying
information in such that the server can handle errors properly.



12-9



Client Handles Errors (cont’d)()
 Problems:

1 It does not know where and why exactly the error occurs in the1. It does not know where and why exactly the error occurs in the
server codes.

2 It ft h dl if l d h t bli dl2. It often handles errors uniformly and somewhat blindly.
 Let the server handle the error usually can reduce the overall code

i H it i l ibl h th h dli th dsize. However, it is only possible when the error handling methods
for all usages are exactly the same. (perform the factoring operation)

 It’s possible that the client code passes some environment identifying It s possible that the client code passes some environment identifying
information in such that the server can handle errors properly.

 Let the client handle the error usually makes the client codes longer.
Frequently, only client codes know what to do with a particular error.

12-9



Client Handles Errors (cont’d)()
 Problems:

1 It does not know where and why exactly the error occurs in the1. It does not know where and why exactly the error occurs in the
server codes.

2 It ft h dl if l d h t bli dl2. It often handles errors uniformly and somewhat blindly.
 Let the server handle the error usually can reduce the overall code

i H it i l ibl h th h dli th dsize. However, it is only possible when the error handling methods
for all usages are exactly the same. (perform the factoring operation)

 It’s possible that the client code passes some environment identifying It s possible that the client code passes some environment identifying
information in such that the server can handle errors properly.

 Let the client handle the error usually makes the client codes longer.
Frequently, only client codes know what to do with a particular error.
I ’ ibl h h d (h

12-9

 It’s possible that the server code passes some exact error types (the
error code) out such that the client code can handle different errors.

Interface Modification
 The StackT example shows that “pushing errors” and “popping

errors” are frequent/normal behaviors by the specification.errors are frequent/normal behaviors by the specification.













12-10



Interface Modification
 The StackT example shows that “pushing errors” and “popping

errors” are frequent/normal behaviors by the specification.errors are frequent/normal behaviors by the specification.

 It is preferred not to call them “error”.











12-10



Interface Modification
 The StackT example shows that “pushing errors” and “popping

errors” are frequent/normal behaviors by the specification.errors are frequent/normal behaviors by the specification.

 It is preferred not to call them “error”.

Al it i f d th t h bli th d h l single & Also, it is preferred that each public method has only single &
simple behavior, for example, Push(item) puts for sure the
specified item onto the stack instead of various combinedspecified item onto the stack, instead of various combined
behaviors, i.e. nothing happens when stack is full, otherwise item
is pushed onto the stack.p









12-10



Interface Modification
 The StackT example shows that “pushing errors” and “popping

errors” are frequent/normal behaviors by the specification.errors are frequent/normal behaviors by the specification.

 It is preferred not to call them “error”.

Al it i f d th t h bli th d h l single & Also, it is preferred that each public method has only single &
simple behavior, for example, Push(item) puts for sure the
specified item onto the stack instead of various combinedspecified item onto the stack, instead of various combined
behaviors, i.e. nothing happens when stack is full, otherwise item
is pushed onto the stack.p

 Usually, we can improve the design by modifying the interface -
provide client extra interface methods such that the behaviors p ov de c e e e ace e ods suc a e be v o s
of Push(item) can be better controlled/predicted

12-10

Interface Modification
 The StackT example shows that “pushing errors” and “popping

errors” are frequent/normal behaviors by the specification.errors are frequent/normal behaviors by the specification.

 It is preferred not to call them “error”.

Al it i f d th t h bli th d h l single & Also, it is preferred that each public method has only single &
simple behavior, for example, Push(item) puts for sure the
specified item onto the stack instead of various combinedspecified item onto the stack, instead of various combined
behaviors, i.e. nothing happens when stack is full, otherwise item
is pushed onto the stack.p

 Usually, we can improve the design by modifying the interface -
provide client extra interface methods such that the behaviors p ov de c e e e ace e ods suc a e be v o s
of Push(item) can be better controlled/predicted

 In the following example, we add two more interface methods to the

12-10

 In the following example, we add two more interface methods to the
StackT class: IsFull(), IsEmpty() so that the behaviors of Push()
and Pop() are simplified.

Helping the Clientp g
 We can add two functions to the StackT class (the server)

























12-11



Helping the Clientp g
 We can add two functions to the StackT class (the server)

bool StackT::IsEmpty() const {bool StackT::IsEmpty() const {
return fTop == kEmptyStack;

}


















12-11



Helping the Clientp g
 We can add two functions to the StackT class (the server)

bool StackT::IsEmpty() const {bool StackT::IsEmpty() const {
return fTop == kEmptyStack;

}
bool StackT::IsFull() const {

return fTop+1 == kStackSize;
}













12-11



Helping the Clientp g
 We can add two functions to the StackT class (the server)

bool StackT::IsEmpty() const {bool StackT::IsEmpty() const {
return fTop == kEmptyStack;

}
bool StackT::IsFull() const {

return fTop+1 == kStackSize;
}

 In the server codes: NOT
handling errors any more







12-11



Helping the Clientp g
 We can add two functions to the StackT class (the server)

bool StackT::IsEmpty() const {bool StackT::IsEmpty() const {
return fTop == kEmptyStack;

}
bool StackT::IsFull() const {

return fTop+1 == kStackSize;
}

 In the server codes: NOT
handling errors any more
void StackT::Push(int element) {

if (!IsFull())
fArray[++fTop] = element;

}

12-11

}

Helping the Clientp g
 We can add two functions to the StackT class (the server)

bool StackT::IsEmpty() const {bool StackT::IsEmpty() const {
return fTop == kEmptyStack;

}
bool StackT::IsFull() const {

return fTop+1 == kStackSize;
}

 In the server codes: NOT

int StackT::Pop() {
if (!IsEmpty())

handling errors any more
void StackT::Push(int element) {

return fArray[fTop--];
else

k k // i l

if (!IsFull())
fArray[++fTop] = element;

}

12-11

return kEmptyStack; // meaningless
}

}

Helping the Client (cont’d)p g ()
 In the client code























12-12

Helping the Client (cont’d)p g ()
 In the client code

void main() {void main() {
StackT stack;

















}

12-12

Helping the Client (cont’d)p g ()
 In the client code

void main() {void main() {
StackT stack;

if (!stack.IsFull())
stack.Push(1);

elseelse
cout << "Deal with push error\n";









}

12-12

Helping the Client (cont’d)p g ()
 In the client code

void main() {void main() {
StackT stack;

if (!stack.IsFull())
stack.Push(1);

elseelse
cout << "Deal with push error\n";

if (! t k I E t ())if (!stack.IsEmpty())
cout << stack.Pop() << '\n';

else
cout << "Deal with pop error\n";

}

12-12

Exceptions vs. assert()p ()
 assert():













12-13





Exceptions vs. assert()p ()
 assert():

 Catches situations that SHOULD NOT happen (but did happen) Catches situations that SHOULD NOT happen (but did happen).
For example, promise made by other classes. Basically these are
cases you don’t want to handle (at least NOT specified in the y (p
program specification).











12-13





Exceptions vs. assert()p ()
 assert():

 Catches situations that SHOULD NOT happen (but did happen) Catches situations that SHOULD NOT happen (but did happen).
For example, promise made by other classes. Basically these are
cases you don’t want to handle (at least NOT specified in the y (p
program specification).

 Typically disabled before product delivery!








12-13





Exceptions vs. assert()p ()
 assert():

 Catches situations that SHOULD NOT happen (but did happen) Catches situations that SHOULD NOT happen (but did happen).
For example, promise made by other classes. Basically these are
cases you don’t want to handle (at least NOT specified in the y (p
program specification).

 Typically disabled before product delivery!
 Should not be seen by the end customer!






12-13





Exceptions vs. assert()p ()
 assert():

 Catches situations that SHOULD NOT happen (but did happen) Catches situations that SHOULD NOT happen (but did happen).
For example, promise made by other classes. Basically these are
cases you don’t want to handle (at least NOT specified in the y (p
program specification).

 Typically disabled before product delivery!
 Should not be seen by the end customer!
 Used to check / track down programmer’s own bugs or

negligence




12-13





Exceptions vs. assert()p ()
 assert():

 Catches situations that SHOULD NOT happen (but did happen) Catches situations that SHOULD NOT happen (but did happen).
For example, promise made by other classes. Basically these are
cases you don’t want to handle (at least NOT specified in the y (p
program specification).

 Typically disabled before product delivery!
 Should not be seen by the end customer!
 Used to check / track down programmer’s own bugs or

negligence
 Exception: try-throw-catch



12-13





Exceptions vs. assert()p ()
 assert():

 Catches situations that SHOULD NOT happen (but did happen) Catches situations that SHOULD NOT happen (but did happen).
For example, promise made by other classes. Basically these are
cases you don’t want to handle (at least NOT specified in the y (p
program specification).

 Typically disabled before product delivery!
 Should not be seen by the end customer!
 Used to check / track down programmer’s own bugs or

negligence
 Exception: try-throw-catch

 Should be seen by people using the code – the end customers.
Not disabled in the final released version.

12-13





Exceptions vs. assert()p ()
 assert():

 Catches situations that SHOULD NOT happen (but did happen) Catches situations that SHOULD NOT happen (but did happen).
For example, promise made by other classes. Basically these are
cases you don’t want to handle (at least NOT specified in the y (p
program specification).

 Typically disabled before product delivery!
 Should not be seen by the end customer!
 Used to check / track down programmer’s own bugs or

negligence
 Exception: try-throw-catch

 Should be seen by people using the code – the end customers.
Not disabled in the final released version.

12-13

 Indicates user errors (e.g. invalid argument errors)


Exceptions vs. assert()p ()
 assert():

 Catches situations that SHOULD NOT happen (but did happen) Catches situations that SHOULD NOT happen (but did happen).
For example, promise made by other classes. Basically these are
cases you don’t want to handle (at least NOT specified in the y (p
program specification).

 Typically disabled before product delivery!
 Should not be seen by the end customer!
 Used to check / track down programmer’s own bugs or

negligence
 Exception: try-throw-catch

 Should be seen by people using the code – the end customers.
Not disabled in the final released version.

12-13

 Indicates user errors (e.g. invalid argument errors)
 Indicates some system errors (e.g. file not found)

assert() / the MS blue screen()
 Your program stops immediately. Usually used only in debugging.
























12-14





assert() / the MS blue screen()
 Your program stops immediately. Usually used only in debugging.
 Why should your program continue if an error has occurred? Why should your program continue if an error has occurred?

1. Non-fatal errors




















12-14





assert() / the MS blue screen()
 Your program stops immediately. Usually used only in debugging.
 Why should your program continue if an error has occurred? Why should your program continue if an error has occurred?

1. Non-fatal errors
void Stack::push(int element) {void Stack::push(int element) {

assert(!isFull());
m_top++;
m array[m top] = element;m_array[m_top] = element;

}










12-14





assert() / the MS blue screen()
 Your program stops immediately. Usually used only in debugging.
 Why should your program continue if an error has occurred? Why should your program continue if an error has occurred?

1. Non-fatal errors
void Stack::push(int element) {void Stack::push(int element) {

assert(!isFull());
m_top++;
m array[m top] = element;m_array[m_top] = element;

}
The failure of the call to push may be non-fatal to the rest of the program.









12-14





assert() / the MS blue screen()
 Your program stops immediately. Usually used only in debugging.
 Why should your program continue if an error has occurred? Why should your program continue if an error has occurred?

1. Non-fatal errors
void Stack::push(int element) {void Stack::push(int element) {

assert(!isFull());
m_top++;
m array[m top] = element;m_array[m_top] = element;

}
The failure of the call to push may be non-fatal to the rest of the program.

2. Failing gracefully






12-14





assert() / the MS blue screen()
 Your program stops immediately. Usually used only in debugging.
 Why should your program continue if an error has occurred? Why should your program continue if an error has occurred?

1. Non-fatal errors
void Stack::push(int element) {void Stack::push(int element) {

assert(!isFull());
m_top++;
m array[m top] = element;m_array[m_top] = element;

}
The failure of the call to push may be non-fatal to the rest of the program.

2. Failing gracefully
p = new int[kBigArraySize];
assert(p!=0);assert(p!=0);


12-14





assert() / the MS blue screen()
 Your program stops immediately. Usually used only in debugging.
 Why should your program continue if an error has occurred? Why should your program continue if an error has occurred?

1. Non-fatal errors
void Stack::push(int element) {void Stack::push(int element) {

assert(!isFull());
m_top++;
m array[m top] = element;m_array[m_top] = element;

}
The failure of the call to push may be non-fatal to the rest of the program.

2. Failing gracefully
p = new int[kBigArraySize];
assert(p!=0);assert(p!=0);

Although the memory is insufficient, the user may want to save the
existing data before quitting.

12-14

assert() / the MS blue screen()
 Your program stops immediately. Usually used only in debugging.
 Why should your program continue if an error has occurred? Why should your program continue if an error has occurred?

1. Non-fatal errors
void Stack::push(int element) {void Stack::push(int element) {

assert(!isFull());
m_top++;
m array[m top] = element;m_array[m_top] = element;

}
The failure of the call to push may be non-fatal to the rest of the program.

2. Failing gracefully
p = new int[kBigArraySize];
assert(p!=0);assert(p!=0);

Although the memory is insufficient, the user may want to save the
existing data before quitting.

12-14

3. Safety-critical programming


assert() / the MS blue screen()
 Your program stops immediately. Usually used only in debugging.
 Why should your program continue if an error has occurred? Why should your program continue if an error has occurred?

1. Non-fatal errors
void Stack::push(int element) {void Stack::push(int element) {

assert(!isFull());
m_top++;
m array[m top] = element;m_array[m_top] = element;

}
The failure of the call to push may be non-fatal to the rest of the program.

2. Failing gracefully
p = new int[kBigArraySize];
assert(p!=0);assert(p!=0);

Although the memory is insufficient, the user may want to save the
existing data before quitting.

12-14

3. Safety-critical programming
The patient will die if the software crashes. / System might be hacked.

Error Handling in C++g
 Three levels:







12-15

Error Handling in C++g
 Three levels:

() h h h ifi i f h assert() statements: those errors that the specification of the
program excludes. You don’t want it to be handled automatically
by your program You don’t want your users see themby your program. You don t want your users see them.





12-15

Error Handling in C++g
 Three levels:

() h h h ifi i f h assert() statements: those errors that the specification of the
program excludes. You don’t want it to be handled automatically
by your program You don’t want your users see themby your program. You don t want your users see them.

 if statements: those expected situations that happened normally
and quite often e g user enter incorrect data file not openedand quite often, e.g. user enter incorrect data, file not opened, …



12-15

Error Handling in C++g
 Three levels:

() h h h ifi i f h assert() statements: those errors that the specification of the
program excludes. You don’t want it to be handled automatically
by your program You don’t want your users see themby your program. You don t want your users see them.

 if statements: those expected situations that happened normally
and quite often e g user enter incorrect data file not openedand quite often, e.g. user enter incorrect data, file not opened, …

 try-catch-throw exceptions: those expected or unexpected
it ti th t h d l (1 t f 100) di ksituations that happened rarely (say 1 out of 100), e.g. disk access

errors, … Or, you want to avoid long/ugly error handling codes…

12-15

Error Handling in C++g
 Three levels:

() h h h ifi i f h assert() statements: those errors that the specification of the
program excludes. You don’t want it to be handled automatically
by your program You don’t want your users see themby your program. You don t want your users see them.

 if statements: those expected situations that happened normally
and quite often e g user enter incorrect data file not openedand quite often, e.g. user enter incorrect data, file not opened, …

 try-catch-throw exceptions: those expected or unexpected
it ti th t h d l (1 t f 100) di ksituations that happened rarely (say 1 out of 100), e.g. disk access

errors, … Or, you want to avoid long/ugly error handling codes…

Rule of thumb: if in doubt, use exceptions

12-15

Error Handling in C++g
 Three levels:

() h h h ifi i f h assert() statements: those errors that the specification of the
program excludes. You don’t want it to be handled automatically
by your program You don’t want your users see themby your program. You don t want your users see them.

 if statements: those expected situations that happened normally
and quite often e g user enter incorrect data file not openedand quite often, e.g. user enter incorrect data, file not opened, …

 try-catch-throw exceptions: those expected or unexpected
it ti th t h d l (1 t f 100) di ksituations that happened rarely (say 1 out of 100), e.g. disk access

errors, … Or, you want to avoid long/ugly error handling codes…

Rule of thumb: if in doubt, use exceptions
Sometimes, there are still practices of using a single goto statement

12-15

to handle all sorts of memory deallocation after program fails. In
general, this mechanism can be replaced by exception handling.

Assertions

 An assertion is a statement that must be true for the An assertion is a statement that must be true for the
function to be correct.









12-16

Assertions

 An assertion is a statement that must be true for the An assertion is a statement that must be true for the
function to be correct.

 Three types of assertions: Three types of assertions:






12-16

Assertions

 An assertion is a statement that must be true for the An assertion is a statement that must be true for the
function to be correct.

 Three types of assertions: Three types of assertions:
 Preconditions: make sure the assumption holds




12-16

Assertions

 An assertion is a statement that must be true for the An assertion is a statement that must be true for the
function to be correct.

 Three types of assertions: Three types of assertions:
 Preconditions: make sure the assumption holds
 Postconditions: make sure the codes perform the task as

promisedpromised


12-16

Assertions

 An assertion is a statement that must be true for the An assertion is a statement that must be true for the
function to be correct.

 Three types of assertions: Three types of assertions:
 Preconditions: make sure the assumption holds
 Postconditions: make sure the codes perform the task as

promisedpromised
Class invariants: make sure some properties always

h ld t f li thold true for a client

12-16

Preconditions
 An assertion that must be satisfied before execution of the function.

























12-17



Preconditions
 An assertion that must be satisfied before execution of the function.

#include <assert h>#include <assert.h>

void StackT::Push(int element) {
assert(!IsFull());assert(!IsFull());
fArray[++fTop] = element;

}















12-17



Preconditions
 An assertion that must be satisfied before execution of the function.

#include <assert h>#include <assert.h>

void StackT::Push(int element) {
assert(!IsFull());assert(!IsFull());
fArray[++fTop] = element;

}

int StackT::Pop() {
assert(!IsEmpty());
return fArray[fTop--];

}






12-17



Preconditions
 An assertion that must be satisfied before execution of the function.

#include <assert h>#include <assert.h>

void StackT::Push(int element) {
assert(!IsFull());assert(!IsFull());
fArray[++fTop] = element;

}

int StackT::Pop() {
assert(!IsEmpty());
return fArray[fTop--];

}
void main() {void main() {

StackT stack;
stack.Push(1); stack.Push(2); stack.Push(3); stack.Push(4);

12-17

(); (); (); ();
}

Preconditions
 An assertion that must be satisfied before execution of the function.

#include <assert h>#include <assert.h>

void StackT::Push(int element) {
assert(!IsFull());assert(!IsFull());
fArray[++fTop] = element;

}

int StackT::Pop() {
assert(!IsEmpty());
return fArray[fTop--];

}
void main() {

Assertion (!IsFull()) failed in stack.c
void main() {

StackT stack;
stack.Push(1); stack.Push(2); stack.Push(3); stack.Push(4);

12-17

(); (); (); ();
}

Preconditions
 An assertion that must be satisfied before execution of the function.

#include <assert h>#include <assert.h>

void StackT::Push(int element) {
assert(!IsFull());assert(!IsFull());
fArray[++fTop] = element;

}

int StackT::Pop() {
assert(!IsEmpty());
return fArray[fTop--];

}
void main() {

Assertion (!IsFull()) failed in stack.c
void main() {

StackT stack;
stack.Push(1); stack.Push(2); stack.Push(3); stack.Push(4);

12-17

(); (); (); ();
} Programmers do not follow the protocol

Postconditions
 An assertion that must be satisfied after execution of the function.

























12-18





Postconditions
 An assertion that must be satisfied after execution of the function.

id St kT Push(i t l t) {void StackT::Push(int element) {
int originalTop = fTop;
assert(!IsFull());assert(!IsFull());
fArray[++fTop] = element;

assert(!IsEmpty() && (fTop == originalTop+1));(p y() (p g p));
}













12-18





Postconditions
 An assertion that must be satisfied after execution of the function.

id St kT Push(i t l t) {void StackT::Push(int element) {
int originalTop = fTop;
assert(!IsFull());assert(!IsFull());
fArray[++fTop] = element;

assert(!IsEmpty() && (fTop == originalTop+1));(p y() (p g p));
}

int StackT::Pop() {
int originalTop = fTop;
assert(!IsEmpty());
i l fA [fT]int value = fArray[fTop--];

assert(!IsFull() && (fTop == originalTop-1));
return value;

12-18

return value;
}

Example of Postconditionp
Class DataT {

friend class StackT;
void StackT::Push(int element) {

assert(!IsFull());friend class StackT;
private:

int fData;

assert(!IsFull());
DataT *temp = new DataT(element);
fArray[++fTop] = temp;

DataT(int data);
};
l St kT {

assert(temp!=NULL);
}

class StackT {
public:

StackT();
temp might actually be NULL if
new operator fails to allocateS ac ();

void Push(int element);
….

new operator fails to allocate
required memory.

private:
DataT *fArray[kStackSize];
int fTop;

12-19

int fTop;
};

Class Invariants
 A class invariant is a condition that holds true for the entire class.


















12-20





Class Invariants
 A class invariant is a condition that holds true for the entire class.
 A class invariant must satisfy two conditions: A class invariant must satisfy two conditions:

1. true at the end of every constructor
2 true at entrance and exit from every public mutator function2. true at entrance and exit from every public mutator function













12-20





Class Invariants
 A class invariant is a condition that holds true for the entire class.
 A class invariant must satisfy two conditions: A class invariant must satisfy two conditions:

1. true at the end of every constructor
2 true at entrance and exit from every public mutator function2. true at entrance and exit from every public mutator function

Note: from the above
a A class invariant holds only for its client (might not hold at anya. A class invariant holds only for its client (might not hold at any

particular instant, especially inside any member function)
b. It is assumed that these objects work in a single-threadedb. It is assumed that these objects work in a single threaded

environment.






12-20





Class Invariants
 A class invariant is a condition that holds true for the entire class.
 A class invariant must satisfy two conditions: A class invariant must satisfy two conditions:

1. true at the end of every constructor
2 true at entrance and exit from every public mutator function2. true at entrance and exit from every public mutator function

Note: from the above
a A class invariant holds only for its client (might not hold at anya. A class invariant holds only for its client (might not hold at any

particular instant, especially inside any member function)
b. It is assumed that these objects work in a single-threadedb. It is assumed that these objects work in a single threaded

environment.
 When is an invariant exempt from being true?p g

inside a private member function

12-20





Class Invariants
 A class invariant is a condition that holds true for the entire class.
 A class invariant must satisfy two conditions: A class invariant must satisfy two conditions:

1. true at the end of every constructor
2 true at entrance and exit from every public mutator function2. true at entrance and exit from every public mutator function

Note: from the above
a A class invariant holds only for its client (might not hold at anya. A class invariant holds only for its client (might not hold at any

particular instant, especially inside any member function)
b. It is assumed that these objects work in a single-threadedb. It is assumed that these objects work in a single threaded

environment.
 When is an invariant exempt from being true?p g

inside a private member function
 bool StackT::ClassInvariant() {

12-20

() {
return (fTop>=kEmptyStack) && (fTop<kStackSize);

}

Class Invariants (cont’d)()
 First condition:

StackT::StackT() : fTop(kEmptyStack) {StackT::StackT() : fTop(kEmptyStack) {
assert(ClassInvariant());
}

















12-21

Class Invariants (cont’d)()
 First condition:

StackT::StackT() : fTop(kEmptyStack) {StackT::StackT() : fTop(kEmptyStack) {
assert(ClassInvariant());
}

 Second condition:
void StackT::Push(int element) { void StackT::Pop() {

assert(ClassInvariant());
assert(!IsFull());
fA [++fT] l t

int value;
assert(ClassInvariant());

fArray[++fTop] = element;
assert(!IsEmpty());
assert(ClassInvariant());

assert(!IsEmpty());
value = fArray[fTop--];
assert(!IsFull());assert(ClassInvariant());

}
assert(!IsFull());
assert(ClassInvariant());
return value;

12-21

}

Managing Assertionsg g
 Problems of using assertions

1 Many checkings require time program might be sloppy1. Many checkings require time, program might be sloppy














12-22





Managing Assertionsg g
 Problems of using assertions

1 Many checkings require time program might be sloppy1. Many checkings require time, program might be sloppy
2. The abort message should never be seen by the user. (e.g. the

annoying MS window’s blue error screen)annoying MS window s blue error screen)












12-22





Managing Assertionsg g
 Problems of using assertions

1 Many checkings require time program might be sloppy1. Many checkings require time, program might be sloppy
2. The abort message should never be seen by the user. (e.g. the

annoying MS window’s blue error screen)annoying MS window s blue error screen)
3. These checkings should not be left effective in a released S/W.











12-22





Managing Assertionsg g
 Problems of using assertions

1 Many checkings require time program might be sloppy1. Many checkings require time, program might be sloppy
2. The abort message should never be seen by the user. (e.g. the

annoying MS window’s blue error screen)annoying MS window s blue error screen)
3. These checkings should not be left effective in a released S/W.

 Use conditional compilation
#define NDEBUG#define _NDEBUG







12-22





Managing Assertionsg g
 Problems of using assertions

1 Many checkings require time program might be sloppy1. Many checkings require time, program might be sloppy
2. The abort message should never be seen by the user. (e.g. the

annoying MS window’s blue error screen)annoying MS window s blue error screen)
3. These checkings should not be left effective in a released S/W.

void StackT::Push(int element) {

 Use conditional compilation
#define NDEBUG

() {
#ifndef _NDEBUG
assert(ClassInvariant());

t(!I F ll())#define _NDEBUG

StackT::StackT() : fTop(kEmptyStack) {

assert(!IsFull());
#endif
fArray[++fTop] = element;

#ifndef _NDEBUG
assert(ClassInvariant());

dif

y[p]
#ifndef _NDEBUG
assert(!IsEmpty());
assert(ClassInvariant());

12-22

#endif
}

assert(ClassInvariant());
#endif

}

errno in UNIX Environment
#include <string.h>

h * t (i)char * strerror(int errnum);
















12-23





errno in UNIX Environment
#include <string.h>

h * t (i)char * strerror(int errnum);
The strerror() function accepts an error number argument errnum
and returns a pointer to the corresponding message string.

e.g. strerror(errno);











12-23





errno in UNIX Environment
#include <string.h>

h * t (i)char * strerror(int errnum);
The strerror() function accepts an error number argument errnum
and returns a pointer to the corresponding message string.

e.g. strerror(errno);

#include <stdio.h>

void perror(const char *string);






12-23





errno in UNIX Environment
#include <string.h>

h * t (i)char * strerror(int errnum);
The strerror() function accepts an error number argument errnum
and returns a pointer to the corresponding message string.

e.g. strerror(errno);

#include <stdio.h>

void perror(const char *string);
The perror() function finds the error message corresponding to the
current value of the global variable errno (intro(2)) and writes it,
followed by a newline, to the standard error file descriptor.

12-23

errno in UNIX Environment
#include <string.h>

h * t (i)char * strerror(int errnum);
The strerror() function accepts an error number argument errnum
and returns a pointer to the corresponding message string.

e.g. strerror(errno);

#include <stdio.h>

void perror(const char *string);
The perror() function finds the error message corresponding to the
current value of the global variable errno (intro(2)) and writes it,
followed by a newline, to the standard error file descriptor.

12-23

e.g. perror("module");


errno in UNIX Environment
#include <string.h>

h * t (i)char * strerror(int errnum);
The strerror() function accepts an error number argument errnum
and returns a pointer to the corresponding message string.

e.g. strerror(errno);

#include <stdio.h>

void perror(const char *string);
The perror() function finds the error message corresponding to the
current value of the global variable errno (intro(2)) and writes it,
followed by a newline, to the standard error file descriptor.

12-23

e.g. perror("module");
// module: error message corresponding to errno

GetLastError() in MS Windows()
LPVOID lpMsgBuf;
FormatMessage(FORMAT MESSAGE ALLOCATE BUFFER |FormatMessage(FORMAT_MESSAGE_ALLOCATE_BUFFER |

FORMAT_MESSAGE_FROM_SYSTEM |
FORMAT MESSAGE IGNORE INSERTS,FORMAT_MESSAGE_IGNORE_INSERTS,
NULL,
GetLastError(), (),
MAKELANGID(LANG_NEUTRAL,

SUBLANG_DEFAULT), // Default language
(LPTSTR) &lpMsgBuf,
0,
NULL); // Process any inserts in lpMsgBuf.

// ...
M B (NULL (LPCTSTR)l M B f "E " MB OK)

12-24

MessageBox(NULL, (LPCTSTR)lpMsgBuf, "Error", MB_OK);
http://msdn2.microsoft.com/en-us/library/ms681385.aspx

