
11

Constructors vs.
Creational Design Patterns

C++ Object Oriented Programming
Pei-yih Ting
NTOU CS

2

Constructors
 Server class Property {

public:
Property(string name, int pricePaid, Date purchaseDate);
virtual int currentValue(Date today)=0;
…

};
 Client void Store::takeInventory() {

Property *p[] = {
new Printer("HPLJ400", 7000, Date(103,9,1));
new Scanner("EpsonA3", 25000, Date(100,7,1));

… };
for (int i=0; i<sizeof(p)/sizeof(Property*); i++)

m_totalValue += p[i]->currentValue(Date(104,05,20));
}

Scanner

Property

Printer

Clients are aware of all the server classes, Printer, Scanner, …

3

Problems with Constructors
 All ctors have the same name with different parameters.
 Ctor always creates a new instance. In some applications, reusing

old objects is tidy and more efficient: e.g. object pools
 Ctor returns objects of the specified type, cannot be a subtype.
 Two objects initiated with the same types of arguments have to

share the same ctor.
 The clients of the server class were developed/distributed long ago,

while the class is evolving to suit the users’ timely requirements.
For example the classes in many frameworks.

 Using factories instead of constructors allows one to use
polymorphism for object creation, not only object use.

 Using factories provides encapsulation: the codes are not tied to
specific classes, and server/client class hierarchy or prototypes can
be changed or refactored without changing each other.

 In class-based programming, a factory is an abstraction of a ctor.
44

Static Factory Method
 Joshua Bloch, Effective Java, page 5-7
 class MyClass {

public:
static MyClass* getInstance();

private:
MyClass();

};
MyClass::MyClass() {

…
}
static MyClass* MyClass::getInstance() {

return new MyClass;
}

 This practice is not the Factory Method pattern in GoF.
 This practice hides the ctor (with the class name). It is possible that making the

ctor public could come back to bite later on. Once it goes public it can no longer
be made private without the risk of breaking existing code that has made use of
the ctor. Retrofitting a ctor to a static factory method later on may be painful.

 Extremely common in Java cryptography API

Advantages:
1. They have names (not just

overloaded ctors)
2. Not necessarily create a new

instance, maybe an instance pool
3. They can return any subtypes of

the specified return types
4. Avoid difficulties when different

objects needs to be created with ctor
with exactly the same arguments

55

Examples
 BigInteger(int, int, Random) returns an integer that is probably a

prime (this is not intuitive by observing its parameter)
Why not use a static factory method BigInteger.probablePrime()?

 Java Crypto
…

SecureRandom random = SecureRandom.getInstance("ECDRBG"); // "JsafeJCE“
…

KeyPairGenerator keyGen =
KeyPairGenerator.getInstance("RSA", "SunRsaSign");

…
Cipher cipher =

Cipher.getInstance("RSA/ECB/PKCS1Padding", "SunJCE");
cipher.init(Cipher.ENCRYPT_MODE, key.getPublic(), random);

…

66

Static Factory Method (cont’d)
Is it good to always follow this practice, or only sometimes?
 This is sort of a judgment call area, but a common problem is that

developers tend to overdesign their code. While it's true that you
should think ahead, you should consider how likely it is to require
such a change. Then you have to make a judgment call. In general, I
would still say that simpler is better. This is essentially an argument
for YAGNI: en.wikipedia.org/wiki/You_ain't_gonna_need_it

 How to balance between avoiding overdesign on the one hand, and
good encapsulation, that is, minimizing the accessibility of classes
and members? That is, the ctor can always be made public, but once
public it has to remain public until the end of time.

 It's difficult and only comes with tons of experience. It depends on
each individual case, and one need to analyze it as such. It goes back
to how you think something will be needed. You should see how your
"guesses" work out and adjust accordingly in the future.

77

Ctor or Static Factory Method?
 It is an overkill unless you have a specific reason to hide the actual

type being created, which is basically when you want to use a
factory method pattern. In the majority of cases that isn't so.
Consider what life would be like if you couldn't construct a String,
or a Thread.

 In general, ctors are simpler than Factory Methods, so this is a
major reason to choose ctors over Factory Method. Use creational
patterns when the situation calls for it, not "by default". You should
do the simplest thing that solves your problem, and most of the time
it would be ctors.

 http://stackoverflow.com/questions/489623/what-is-your-threshold-
to-use-factory-instead-of-a-constructor-to-create-an-object

8

Simple Factory
 Simple factory is a class with a public static method which will

actually do the object creation task according to the input it gets.
 Ex.

class CourseFactory {
public:

static AbstractCourse *createCourse(char scheduleType) {
AbstractCourse *objCourse;
switch (scheduleType) {

case 'N': objCourse = new NetCourse(); break;
case 'J': objCourse = new JavaCourse(); break;

}
objCourse->createCourseMaterial();
objCourse->createSchedule();

}
};

 The client is further separated from the object creation (as compared
with the static factory method): not knowing the specific class name. 8

Special configuration logics

This is one of the pattern not born from GOF, most
people consider it a default factory method pattern.

99

Design Patterns
Creational
 Abstract factory
 Builder
 Factory method
 Prototype
 Singleton
 Object Pool

Structural
 Adapter
 Bridge
 Composite
 Decorator
 Façade
 Flyweight
 Proxy

Behavioral
 Chain of responsibility
 Command
 Interpreter
 Iterator
 Mediator
 Memento
 Observer
 State
 Strategy
 Template Method
 Visitor

10

Creational Design Patterns
 These design patterns are all about object instantiation.

 class-creation patterns: use inheritance effectively
 object-creation patterns: use delegation effectively

 Abstract Factory: Creates objects of several families of classes
 Builder: Separate the construction process of a complex object from

its representation. The same construction process can create objects
with different representations.

 Factory Method: Uniformly create instances for derived classes
 Object Pool: Avoid expensive acquisition and release of resources

by recycling objects that are no longer in use
 Prototype: Copy a fully initialized instance
 Singleton: A class of which only a single instance can exist

1111

Factory Method Pattern (GoF p.107)
 A factory method pattern abstracts the Creation and

Configuration of objects from the client codes that uses the objects.
 Creating objects (products) without specifying the exact class of

object that will be created. The client codes of the products do not
need to know which exactly subclass of products they are using.

 The essence of this pattern is to “Define an interface for creating an
object, but let the classes that implement the interface decide which
class to instantiate.”

 Using the template-method pattern
 Used commonly in frameworks, where

library code needs to create objects of types
that may be subclassed
by applications using
the framework.

ConcreteCreator

+factoryMethod():Product

Product

Creator

+factoryMethod():Product
+templateMethod():Product

class MagicMazeGame: public MazeGame {
protected:

Room *makeRoom()
};

// concrete factory method with deferred
// instantiation
Room *MagicMazeGame::makeRoom() {

return new MagicRoom();
}

class MazeGame {
public:

MazeGame();
protected:

virtual Room *makeRoom();
...

};

// template method with
// fixed configuration logics
MazeGame::MazeGame() {

Room *room1 = makeRoom();
Room *room2 = makeRoom();
room1.connect(room2);
addRoom(room1);
addRoom(room2);

}

// factory method: to be overridden
Room *MazeGame::makeRoom() {

return new OrdinaryRoom();

A maze game may be played in two modes,
one with regular rooms that are only connected
with adjacent rooms, and one with magic rooms
that allow players to be transported at random
The regular game mode could use the template
method: MazeGame() ctor, which implements
some common logic. It refers to the makeRoom()
factory method that encapsulates the creation of
rooms such that other rooms can be used in a
subclass MagicMazeGame.

13

IDCard Example

13

IDCardFactory

-createProduct():IDCard
-registerProduct(IDCard)
+getOwners()

Factory
+create():Product
-createProduct():Product
-registerProduct(Product)

Product

- owners

Create

Create

+use()

IDCard
-owner

+use()
+getOwner()

Client

Client codes are unaware of/abstrated away from the actual Product class (i.e. IDCard)
The template method Factory::create() is final and specified the configuration logic.
The factory methods Factory::createProduct(), Factory::registerProduct() are deferred
to its concrete instantiation IDCardFactory.

14

Factory Method

14

ConcreteCreator

-factoryMethod()

Creator

+create():Product
-factoryMethod()

ProductCreate

Create

+method1()
+method2()

ConcreteProduct

+method1()
+method2()

Client

15

Builder
Problem:
 An application needs to create the elements of a complex aggregate.

The specification for the aggregate exists on secondary storage and
one of many representations needs to be built in primary storage.

 E.g. Separate the algorithm for interpreting (i.e. reading and parsing)
a stored persistence mechanism (e.g. RTF files) from the algorithm
for building and representing one of many target products (e.g.
ASCII, TeX, text widget). The focus/distinction is on creating
complex aggregates.

Intents:
 Separate the construction of a complex object from its

representation so that the same construction process can create
different representations.

 Parse a complex representation, create one of several targets.
16

Builder (cont’d)

16

Director
-builder: Builder
+construct()

Builder

+buildPart()

ConcreteBuilder

+buildPart()
+getResult(): Product

Product <<create>>

builder.buildPart()

 Structure

:Client

:Director
:ConcreteBuildercreate()

create(:ConcreteBuilder)

construct() BuildPartA()
BuildPartB()
BuildPartC()

getResult()

constructs the product
step by step under the
control of the "director"

1717

Builder Example
 It all depends the complexity involved in creation and initialization

of object. If they are simple then no need to use factory pattern.
 If its a bit complex (involving lot of steps in initialization before

you use it) then better go with Builder pattern.
 We have a Car class. The problem is that a car has many options.

The combination of each option would lead to a huge list of
constructors for this class. So we will create a builder class,
CarBuilder. We will send to the CarBuilder each car’s option step
by step and then construct the final car with the right options:

 class Car can have GPS, trip computer and various numbers of
seats, can be a city car, a sports car, or a cabriolet.

 class CarBuilder has
 method getResult() outputs a Car with the right options constructed
 method setSeats(number) inputs the number of seats the car should have,

tells the builder the number of seats. 18

Builder Example (cont’d)
 method setCityCar() makes the builder remember that the car is a city car.
 method setCabriolet() makes the builder remember that the car is a cabriolet.
 method setSportsCar() makes the builder remember that the car is a sports car.
 method setTripComputer() tells the builder that the car has a trip computer.
 method unsetTripComputer() tells the builder that the car does not have a

trip computer.
 method setGPS() tells the builder that the car has a global positioning system.
 method unsetGPS() tells the builder that the car does not have a GPS system.

 Object creation
CarBuilder carBuilder;
carBuilder.setSeats(2);
carBuilder.setSportsCar();
carBuilder.setTripComputer();
carBuilder.unsetGPS();
Car car = carBuilder.getResult()

18

19

Builder Example (cont’d)
 Typesetting/Rendering html, text, rtf, pdf, documents

Client
Director

+construct()
builder Builder

+makeTitle()
+makeString()
+makeItems()
+getResult()

HtmlBuilder

+makeTitle()
+makeString()
+makeItems()
+getResult()

-filename
-writer

TextBuilder

+makeTitle()
+makeString()
+makeItems()
+getResult()

-buffer
RTFBuilder

+makeTitle()
+makeString()
+makeItems()
+getResult()

-buffer
-writer

20

Singleton
 Problem: Exactly one instance of a class is allowed.

Objects need a global and single point of access.
 Solution:

 Define a static member variable as the sole instance
 Define non-public constructors to limit the access
 Define a static method that returns the instance: getInstance()

 Used in many patterns like State, Strategy, Factory,
Prototype, …

21

Singleton (cont’d)
// Singleton.h
class Singleton {
public:

static Singleton* getInstance() {
return instance;

}
protected:

Singleton();
Singleton(const Singleton &src);
Singleton& operator=(const Singleton &rhs);

private:
static Singleton* instance;

};
// Singleton.cpp
Singleton *Singleton::instance = new Singleton;

// Client codes
Singleton *p = Singleton::getInstance();

Singleton
-m_instance
#Singleton()
#Singleton(Singleton&)
+getInstance()

return unique instance

22

Prototype
 Problem:

 Application "hard wires" the class of object to create in each "new"
expression.

 Create a new instance is expensive.

 Solution:
 Specify the kinds of objects to create using a prototypical instance, and create

new objects by copying this prototype.
 Co-opt one instance of a class for use as a breeder of all future instances.

 Example: When a cell splits, two cells of identical genotvpe result.
In other words, the cell clones itself.

Cell
+split()

SingleCellOrganism
+split()

23

Prototype (cont’d)

Image

ImageTwo

+service()
+clone()

+service()
-ctor
-copy ctor
+clone()

-s_imageTwo
-s_id
-m_id

ImageFactory

+registerPrototype(Key, Image*)
+populateImage(Key)

-s_prototypeRegistry

return new ImageOne(*this)

ImageOne

+service()
-ctor
-copy ctor
+clone()

-s_imageOne
-s_id
-m_id

return s_prototypes[key].clone()

prototypeRegistry is
populated each Image
derived class registers
the singleton itself

Client

Singleton

 Structure

24

Prototype (cont’d)
 Prototype doesn't require sub-classing, but it does require an

“initialize” operation. Factory Method requires sub-classing, but
doesn't require “initialize”.

 Designs that make heavy use of the Composite and Decorator
patterns often can benefit from Prototype as well.

 Prototype co-opts one instance of a class for use as a breeder of all
future instances.

 Prototypes are useful when object initialization is expensive, and
you anticipate few variations on the initialization parameters. In this
context, Prototype can avoid expensive "creation from scratch", and
support cheap cloning of a pre-initialized prototype.

 Prototype is unique among the other creational patterns in that it
doesn't require a class – only an object. Object-oriented languages
like Self and Omega that do away with classes completely rely on
prototypes for creating new objects.

25

Object Pool
 Problem: Manages reuse of objects when a type of object is

expensive to create or only limited number needed.
 Solution:

 Create a reusable class to collaborate with other objects for a finite time.
 Create a reusable pool to manage reusable objects for use by clients.

 Example: Suppose you have a database system that need to allow
only a limited number of accesses to the database at one time. One
typical solution is to write a counting semaphore to protect this
resource from having more than the limited access

Client

manage objects
uses

Reusable

Singleton to
manage reusables
with a single
coherent policyObjectPool

-m_instance
+getInstance()
+acquireReusable()
+releaseReusable()

request/release

26

Object Pool (cont’d)
// Reusable.h
class Reusable {
public:

Reusable();
void reset();
int getValue();
void setValue(int number);

private:
int m_value;

};

// Reusable.cpp
#include "Reusable.h"
Reusable::Reusable():m_value(0) {}
void Reusable::reset() {

m_value=0;
}
int Reusable::getValue() {

return m_value;
}
void Reusable::setValue(int number) {

m_value=number;
}

// ObjectPool.h
class Reusable;
#include <list>
using std::list;
class ObjectPool {
public:

static ObjectPool& getInstance();
Reusable *acquireReusable();
void releaseReusable(Reusable* object);

private:
list<Reusable*> m_reusables;
static ObjectPool s_instance;
ObjectPool();
ObjectPool(const ObjectPool&);
ObjectPool& operator=(const ObjectPool&);
~ObjectPool();

};

27

Object Pool (cont’d)
// ObjectPool.cpp
#include "ObjectPool.h"
#include "Reusable.h"
#include <iostream>
using std::cout;
ObjectPool ObjectPool::s_instance;
ObjectPool::ObjectPool() {}
ObjectPool::~ObjectPool() {

list<Reusable*>::iterator iter;
for (iter=m_reusables.begin();

iter!=m_reusables.end(); iter++)
delete *iter;

}
ObjectPool &ObjectPool::getInstance() {

return s_instance;
}
Reusable *ObjectPool::acquireReusable() {

if (m_reusables.empty()) {
cout << "Creating new resource\n";
return new Reusable;

}
else {

cout << "Reusing existing resource\n";

Reusable* reusable = m_reusables.front();
m_reusables.pop_front();
return reusable;

}
}
void ObjectPool::releaseReusable(Reusable* object) {

object->reset();
m_reusables.push_back(object);

}

// client codes
int main() {

ObjectPool &pool = ObjectPool::getInstance();
Reusable *one, *two, *three;
one = pool.acquireReusable(); one->setValue(10);
cout << "one=" << one->getValue() << " [" << one << "]\n";
two = pool.acquireReusable(); two->setValue(20);
cout << "two=" << two->getValue() << " [" << two << "]\n";
pool.releaseReusable(one);
one = pool.acquireReusable();
cout << "one=" << one->getValue() << " [" << one << "]\n";
three = pool.acquireReusable(); three->setValue(30);
cout << "three=" << three->getValue() << " [" << three << "]\n";
return 0;

} 28

Abstract Factory
 Problem:

 If an application is to be portable, it needs to encapsulate platform
dependencies. These "platforms" might include: windowing system, operating
system, database, etc. Too often, this encapsulation is not engineered in
advance, and lots of #ifdef case statements with options for all currently
supported platforms begin to procreate like rabbits throughout the code.

 The new operator considered harmful to the platform transparency
requirements.

 Intents:
 Provide an interface for creating families of related or dependent objects

without specifying their concrete classes.
 A hierarchy that encapsulates many possible "platforms", and the construction

of a suite of "products".
 Provide a level of indirection that abstracts the creation of families of related or

dependent objects without directly specifying their concrete classes. The
"factory" object has the responsibility for providing creation services for the
entire platform family. Clients never create platform objects directly, they ask
the factory to do that for them.

29

Abstract Factory (cont’d)
 Structure

+createProductA()
+createProductB()

AbstractFactory

+createProductA()
+createProductB()

ConcreteFactory1

+createProductA()
+createProductB()

ConcreteFactory2

ProductB1

AbstractProductA

ProductA1 ProductA2

Client

*AbstractProductB

ProductB2

*

*

*

*

<<create>>

<<create>>

<<create>>

<<create>>

*

30

Example: DesktopPC

+getProcessor()
+getHarDisk()

MachineFactory

+getProcessor()
+getHardDisk()

HiBudgetFactory LoBudgetFactory

LargeHD

Processor

Client

*HardDisk

HiEndProcessor LoEndProcessor

SmallHD

*

*

*

*

<<create>>

<<create>>

<<create>>

<<create>>

*

+getInstance()

-s_factory

+makeComputer()

+getProcessor()
+getHardDisk()
+getInstance()

-s_factory

31

Applying Creational Patterns
 Sometimes creational patterns are competitors: there are cases when

either Prototype or Abstract Factory could be used properly. At
other times they are complementary: Abstract Factory might store
a set of Prototypes from which to clone and return product objects.
Abstract Factory, Builder, and Prototype can use Singleton in
their implementations.

 Abstract Factory classes are often implemented with Factory
Methods, but they can be implemented using Prototype.

 Factory Method: creation through inheritance.
Prototype: creation through delegation.

 Often, designs start out using Factory Method (less complicated,
more customizable, subclasses proliferate) and evolve toward
Abstract Factory, Prototype, or Builder (more flexible, more
complex) as the designer discovers where more flexibility is needed.

32

Applying Creational Patterns (cont’d)
 Abstract Factory, Builder, and Prototype define a factory object

that's responsible for knowing and creating the class of product
objects, and make it a parameter of the system.

 Abstract Factory has the factory object producing objects of
several classes.

 Builder has the factory object building a complex product
incrementally using a correspondingly complex protocol.

 Prototype has the factory object (aka prototype) building a product
by copying a prototype object.

