
26-1

Polymorphism

C++ Object Oriented Programming
Pei-yih Ting
NTOU CS

26-2

Contents
 Assignment to base / derived types of objects

 Assignment to base / derived types of pointers

 Heterogeneous container and virtual functions

 Compile-time binding vs. run-time binding

 Virtual function vs. overloading

 Function resolving and function hiding

 Type of polymorphisms

 Virtual destructors

 Double dispatch / Visitor Pattern

26-3

Assignment to Base Class Object
 Assume Graduate is derived from Person

Assignment from derived class object to base class object is legal
Person person("Joe", 19);
Graduate graduate("Michael", 24, 6000, "8899 Storkes");
person.display();
person = graduate;
person.display();
Person person2 = graduate;
person2.display();

 What happened:
1. A derived object, by definition, contains everything the base class

has plus some extra elements.
2. The extra elements are lost in the

assignment.
 If the base class has implemented the

assignment operator or the copy ctor,
they will be called.

Output
Joe is 19 years old.
Michael is 24 years old.
Michael is 24 years old.

Person
m_name
m_age

Graduate
m_name
m_age
m_stipend
m_office

though unusual

26-4

Assignment to Derived Class Object
 Assignment from base class object to derived class object is illegal

graduate = person;
Graduate graduate2 = person;

 What would happen if the above is allowed?

The extra fields in the derived class
would become uninitialized.

 Summary
“Derived class object to base class object” loses data (but is legal).
“Base class obj to derived class obj” leaves data uninitialized (illegal).

error C2679: binary '=' : no operator defined which takes a right-hand operand
of type 'class Person' (or there is no acceptable conversion)

Person
m_name
m_age

Graduate
m_name
m_age
m_stipend
m_office

?
?

26-5

Assignment to Base Class Pointer
 Assignment from a derived pointer to a base class pointer is legal

Person *person = new Person("Joe", 19);
Graduate *graduate = new Graduate("Michael", 24, 6000, "8899 Storkes");
persondisplay();

person = graduate;
persondisplay();

 What happened
1. persondisplay() calls Person::display() that shows the

private data of the Base part of the object
pointed to by the pointer graduate

2. Person::display() cannot access
Graduate::m_stipend and
Graduate::m_office

Output
Joe is 19 years old.
Michael is 24 years old.

Person
m_name
m_age

Graduate

m_stipend
m_office

graduate

person

26-6

Assignment to Derived Class Pointer
 Assignment from a base pointer to a derived pointer is illegal, but

you certainly can coerce it with an explicit type cast
Person *person = new Person("Joe", 19);
Graduate *grad1, *grad2=new Graduate("Michael", 24, 6000, "8899 Storkes");
grad1 = (Graduate *) person;
grad1display();

 This is called a downcast.
Downcast is dangerous. It is
correct only when the object
pointed by person is an object
of class Graduate.

 What happened:
grad1display() calls Graduate::display(), which
accesses m_name, m_age, m_stipend, and m_office to
display them, but the latter two fields do not exist for
this Person object

Output
Joe is 19 years old.
He is a graduate student.
He has a stipend of –384584985 dollars.
His address is 324rekj8

Person
m_name
m_age

m_stipend
m_office

?
?

graduate
ex. person = grad2;…

grad1 = (Graduate *) person;

grad1=dynamic_cast<Graduate *> person; // grad1 == 0

26-7

Heterogeneous Container
 We would like to store all types of objects in a single database/array.

Person *database[3];
database[0] = new Undergraduate(“Bob", 18);
database[1] = new Graduate("Michael", 25, 6000, "8899 Storkes");
database[2] = new Faculty(“Ron", 34, "Gates 199", "associate professor");
for (int i=0; i<3; i++)

database[i]->display();

 What is called by the above code
is always Person::display() which shows only the Base part of each
object instead of the display() member function of the derived class
which shows all detail information of the derived class.
Note: in the above program, we can use static object array Person database[3]; as

well, the printed result would be the same, but what it really saved differ.

 Is there a modification that can make the above code display all
detail information of any derived class in a uniform way?

Output
Bob is 18 years old.
Michael is 25 years old.
Ron is 34 years old.

26-8

A Solution with Data Tag
 Create an enumerated type for each base type:

enum ObjectType {undergrad, grad, professor};
 Add a tag of this type to the base class

class Person {
public:

Person();
Person(char *name, int age, ObjectType typeTag);
~Person();
ObjectType getType();
void display() const;

private:
char *m_name;
int m_age;
ObjectType m_typeTag;

};
 Make the necessary changes in the constructor

Person::Person(char *name, int age, ObjectType typeTag)
: m_age(age), m_typeTag(typeTag) {

m_name = new char[strlen(name)+1];
strcpy(m_name, name);

}

Undergraduate::Undergraduate(…):
Person(…,undergrad)

{…}

26-9

A Solution with Data Tag (Cont’d)
Person *database[3], *temp;
database[0] = new Undergraduate(“Bob", 18);
database[1] = new Graduate("Michael", 25, 6000, "8899 Storkes");
database[2] = new Faculty(“Ron", 34, "Gates 199", "associate professor");
for (int i=0; i<3; i++)
{

temp = database[i];
switch (tempgetType())
{
case undergrad:

((Undergraduate *) temp)display();
break;

case grad:
((Graduate *) temp)display();
break;

case professor:
((Faculty *) temp)display();
break;

}
}

Using code to select code

Downcast is the
“goto” for OOP!!

This is a segment of code not satisfying open-closed principle.
Usually, this is avoided with the “strategy” pattern.

// another way to implement w/o tags
if (dynamic_cast<Undergraduate*>(temp))

((Undergraduate*)temp)->display();
else if (dynamic_cast<Graduate*>(temp))

((Graduate*)temp)->display();
else if (dynamic_cast<Faculty*>(temp))

((Faculty*)temp)->display();

26-10

Solution with Virtual Function
 Declare the function as virtual in the base class

class Person {
public:

Person();
Person(char *name, int age);
~Person();
virtual void display() const;

private:
char *m_name;
int m_age;

};

 The rest of the code is all the same
Person *database[3];
database[0] = new Undergraduate(“Bob", 18);
database[1] = new Graduate("Michael", 25, 6000, "8899 Storkes");
database[2] = new Faculty(“Ron", 34, "Gates 199", "associate professor");
for (int i=0; i<3; i++)

database[i]display();
or equivalently
(*database[i]).display();

Output
Bob is 18 years old.
He is an undergraduate.
Michael is 25 years old.
He is a graduate student.
He has a stipend of 6000 dollars.
His address is 8899 Storkes.
Ron is 34 years old.
His address is Gates 199.
His rank is associate professor.

Will invoke Undergraduate::display()
Graduate::display() and Faculty::display()
in turn

26-11

Virtual vs. Non-virtual Functions

Nonvirtual function Virtual function

Person *base = new Person("Bob", 18);
Faculty *derived = new Faculty("Ron", 34, "Gates 199", "associate professor");

basedisplay();
deriveddisplay();
base=derived;
basedisplay();

basedisplay();
deriveddisplay();
base=derived;
basedisplay();

Compile-time binding
(static binding)

Run-time binding
(Late-binding, dynamic binding)

Person
display()

Person
display()

Faculty
display()

Faculty
display()

The function to be called is
determined by the type of the
pointer during compilation.

The function to be called is
determined by the object the pointer
refers to during run-time.

polymorphic
pointer

26-12

Virtual Function
 The keyword virtual is not required in a derived class.

class Undergraduate: public Person {
public:

Undergraduate(char *name, int age);
virtual void display() const; // optional here if display() is already a virtual

}; // function in Person class
Some C++ programmers consider it a good style to include the keyword for clarity

 Syntax
The keyword virtual must not be used in the function definition, only
in the declaration

 Historical backgrounds
 Most object-oriented languages have only run-time binding.
 C++, because of its origins in C, has compile-time binding by default.

 Static member functions and constructors cannot be declared
virtual. Destructors are always declared as virtual functions.

error C2723: 'func1' : 'virtual' storage-class specifier illegal on function definition

Efficiency
consideration

26-13

Function Pointer
 Increasing the flexibility of your program
 Making the process / mechanism an adjustable parameter (you can

pass a function pointer to a function) ex. qsort(), find(), sort()
 Syntax:

return_type (*function_pointer_variable)(parameters);
 Example:

int func1(int x) {
…
return 0;

}
int (*fp)(int);
fp = func1;
(*fp)(123); // calling function func1(), i.e. func1(123)

int func2(int x) {
…
return 0;

}

26-14

Function Pointer (cont’d)
 Increasing the flexibility of the program
 Example continued

func1(), func2(), and fp are defined as before
Consider the following function:
void service(int (*proc)(int), int data) {

…
(*proc)(data);
…

}
…
fp = func2;
…
service(fp, x);

26-15

Virtual Table
 C++ uses function pointers to implement the late binding (runtime

binding, dynamic binding, dynamic dispatch) mechanism of virtual
functions: the address of virtual member functions are stored in each
object as a data structure “virtual table” as follows

vtbl ptr
m_name
m_age

a Person object

m_name
m_age

vtbl ptr

m_stipend
m_office

a Graduate object

Person::display Graduate::display
more virtual

functions

Virtual table

Note: addresses of non-virtual functions are not
kept in the virtual table 26-16

Overloading, Overriding, Hiding
 Overloading: two functions in the same

scope, have the same name, different
signatures (virtual is not required)

 Overriding: two functions in different
scopes (parent vs child), have the same
name. same signatures (virtual is required)

 Hiding: base class member function is hidden
1. When a base class and a derived class

declare virtual member functions with different
signatures but with the same name.

2. When a base class declares a non-virtual
member function and a derived class declares
a member function with the same name but
with or without the same signature.

service(int)
service(double, int)

virtual service(int,int)

virtual service(int,int)

service(int,int)

service(int,int)

virtual service(double)

virtual service(int,int)

26-17

Virtual Function vs. Overloading
 Overloading (static polymorphism or compile-time polymorphism)

void Person::display() const;
void Person::display(bool showDetail) const;
The arguments of the overloaded functions must differ.

 Overriding (virtual functions, dynamic polymorphism)
virtual void Person::display() const;
virtual void Faculty::display() const;
The arguments must be identical.

 What happens if the arguments are not identical?
virtual void Person::display() const;
virtual void Faculty::display(bool showDetail) const;
 In Faculty class, display(bool) does not override Person::display(),
 It does NOT overload Person::display() either.

 This phenomenon is called hiding.
 Only Faculty::display(bool) exists in the Faculty class, there is no

Faculty::display(), although Person::display() exists in its base class.

Note that scope operators are not
required in these declarations, they
are only for illustration purpose.

26-18

Member Function Calling Mechanism
Faculty *prof = new Faculty("Ron", 34, "Gates 199", "associate professor");
Person *person = prof;
persondisplay(); // dynamically binded, calling Person::display()
persondisplay(true);// compile-time error, display() does not take 1 param
profdisplay(); // compile-time error, display(bool) does not take 0 param
profdisplay(true); // dynamically binded, calling Faculty::display(bool)

 The member function resolution and binding rules in C++:
referrer.function() referrer-function()

1. Search in the scope of the static type of the referrer pointer/reference/object to
find the specified function in its explicitly defined functions

2. If it is a virtual function and referrer is a pointer (including this pointer) or
reference, use dynamic binding otherwise use static one

What functions are explicit in the scope of a class?
1. Defined in the class declaration
2. Search upward the inheritance tree, match

all functions not hided previously (by any
function having the same name)

Person
virtual display()

Faculty
virtual display(bool)

26-19

Explicitly Defined Functions
class Base {
public:

void func1() { cout << "Base::func1() #1\n"; }
virtual void func2() { cout << "Base::func2() #2\n"; }
void func3() { cout << "Base::func3() #3\n"; }
virtual void func4() { cout << "Base::func4() #4\n"; }
virtual void func5() { cout << "Base::func5() #5\n"; }
virtual void func5(int, int) { cout << "Base::func5(int,int) #6\n"; }

};

class Derived: public Base {
public:

void func3() {
cout << "Derived::func3() #7\n";

}
void func4() {

cout << "Derived::func4() #8\n";
}
void func5(int) {

cout << "Derived::func5(int) #9\n";
}

};

class FDerived1: public Derived {
};

class FDerived2: public Derived {
public:

void func5() {
cout << "FDerived2::func5() #10\n";

}
void func5(int, int) {

cout << "FDerived2::func5(int, int) #11\n";
}

};

Explicit: 1,2,3,4,5,6

Explicit: 1,2,7,8,9
Implicit: 3,4,5,6

Explicit: 1,2,7,8,9
Implicit: 3,4,5,6

Explicit: 1,2,7,8,10,11
Implicit: 3,4,5,6,9

Virtual functions: 2, 4, 5, 6, 8, 9, 10, 11

26-20

Polymorphism
 Polymorphism: a single identity stands for different things
 C++ implements polymorphism in three ways

 Overloading – ad hoc / static polymorphism, static dispatch
one name stands for several functions

 Templates – parametric polymorphism
one name stands for several types or functions

 Virtual functions – pure / dynamic polymorphism, dynamic dispatch
one pointer (reference) refers to any base or derived class objects

use object to select code
 Many OO languages does not support parameterized polymorphism,

e.g. JAVA before J2SE 5.0 (2004), it is called Generics in Java
 Is there any drawback to pure polymorphism?

Virtual function calls are less efficient than non-virtual functions
 What are the benefits from polymorphism?

Superior abstraction of object usage (code reuse),
old codes call new codes (usage prediction)

26-21

Code Reuse
 There are basically two major types of code reuses:

 Library subroutine calls: put all repeated procedures into a
function and call it whenever necessary. The codes gathered into
the function is to be reused.
Note: basic inheritance syntax would automatically include all

data members and member functions of parent classes into
the child class. This is also a similar type of program reuse.

 Factoring: sometimes, we substitute a particular module in a
program with a replacement. In this case, the other part of system
is reused.
Note: ex. 1. OS patches or device drivers replace the old module

and reuse the overall architecture.
2. Application frameworks provide the overall

application architectures while programmer supply
minor modifications and features.

interface inheritance also reuses the other part of program.
26-22

Old Codes Call New Codes
 Using existent old codes to call non-existent new codes
 Using data (object) to select codes
 While writing the following codes, the programmer might not know

which display() function is to be called. The actual code be called
might not existent at the point of writing. He only knows that the
object pointed by database[i] must be inherited from Person. The
semantics of the virtual function display() is largely determined in
designing the class Person. The derived class should not change it.

void show(Person *database[3]) {
for (int i=0; i<3; i++)

database[i]display();
}

Later, if we derive a class Staff from Person, and implement a new
member function Staff::display(),

database[0] = new Staff(…); …
show(database);

old codes
closed for modification
but open for extension

new codes

26-23

Two Major Code Reuses of Inheritance
 Code inheritance: reuse the data and codes in the base class
 Interface inheritance: reuse the codes that employ(operate) the base

class objects

 Comparing the above two types of code reuse, the first one reuses
only considerable amount of old codes. The second one usually
reuses a bulk amount of old codes.

 Interface inheritance is a very important and effective way of
reusing existent codes. This feature makes Object Oriented
programming successful in the framework design, in which the
framework provides a common software platform, ex. Window GUI
environment, math environment, or scientific simulation
environment. Using predefined interfaces (abstract classes in C++),
a framework can support all utility functions to an empty application
project.

26-24

Using C++ Polymorphism

 Should you make every (non-private) function virtual?
 Some C++ programmers do.
 Others do so only when compelled by necessity.
 Java's member function are all virtual.
 Doing so ensures the pure OO semantics and have good semantic

compatibility if you are using multiple OO languages.
 You can change to non-virtual when profiling shows that the

overhead is on the virtual function calls

26-25

Virtual Function vs. Inline Function
 Virtual function and inline function are contradicting

language features
 Virtual function requires runtime binding but inline function

requires compile-time code expansion
 However, you will see in many places virtual inline

combinations, ex.
class base {

…
virtual ~base() {}
…

};
 Why??

Virtual function does not always use dynamic binding.
This is a C++ specific feature. 26-26

Virtual Function vs. Static Function
 Virtual function and static function are also contradicting

language features
 Static function is a class method shared among all objects of the

same class. Calling a static function does NOT mean sending a
message to an object. There is no “this” object in making a static
function call.

 It is, therefore, completely useless to put a static function in the
virtual function table. (calling a static function does not require a
target object, and thus the virtual function table within it)

 A static function cannot be virtual. Calling a static function
always uses static binding. No overriding with static function.

 You can redefine a static function in a derived class. The static
function in the base class is hided as usual.

26-27

Virtual Destructors
 Base classes and derived classes may each have destructors

Person::~Person() {
delete[] m_name;

}
Faculty::~Faculty() {

delete[] m_rank;
}

 What happens in this scenario?
Person *database[3];
Faculty *prof = new Faculty("Ron", 40, "6000 Holister", "professor");
database[0] = prof;
delete database[0];

 If the destructor of Person is non-virtual, only the destructor for Person will be
called, the Faculty part of the object will not be destructed suitably.

 The solution is simple
virtual ~Person(); // virtual destructor

 Note: This syntax makes every destructor of every derived class virtual even
though the names do not match. Visual Studio automatically does this.

Single / Double Dispatch
x->message(y);

 C++ (virtual) function provides only single dispatch: the
decision of which message() to call is based on the type of x

 Double dispatch: the decision is based not only on the type of x but
also on the type of y, C++ does not support double dispatch

 Example: Single Dispatch

26-28

Base

Derived

SpaceShip

ApolloSpacecraft

Asteroid
+virtual collideWith(SpaceShip*)
+virtual collideWith(ApolloSpacecraft*)

ExplodingAsteroid
+collideWith(SpaceShip*)
+collideWith(ApolloSpacecraft*)

overloading

overriding, overloading, hiding

Asteroid *asteroid = new ExplodingAsteroid;
SpaceShip *spaceShip = new ApolloSpacecraft;
asteroid->collideWith(spaceShip);
delete asteroid; delete spaceShip;

dynamic dispatch static dispatch

Double Dispatch (cont’d)
 This is the basis of the Visitor pattern

26-29

SpaceShip
+virtual collideWith(Asteroid* a)

ApolloSpacecraft
+virtual collideWith(Asteroid* a)

Asteroid
+virtual collideWith(SpaceShip*)
+virtual collideWith(ApolloSpacecraft*)

ExplodingAsteroid
+collideWith(SpaceShip*)
+collideWith(ApolloSpacecraft*)

Asteroid *asteroid = new ExplodingAsteroid;
SpaceShip *spaceShip = new ApolloSpacecraft;

asteroid->collideWith(spaceShip);

spaceShip->collideWith(asteroid);

delete asteroid;
delete spaceShip; dynamic dispatch

static dispatch

a->collideWith(this);

a->collideWith(this);

Visitor Pattern
 A way of separating an algorithm from an object structure on which

it operates such that it is possible to add new operations to existing
object structures without modifying those structures and enforcing
the OCP.

 e.g. add new virtual functions
to a family of classes without
modifying the classes themselves.

26-30

Element
+accept(Visitor *v)

ElementOne
+accept(Visitor *v)

ElementTwo
+accept(Visitor *v)

Visitor
+visit(ElementOne *e)
+visit(ElementTwo *e)

VisitorTwo
+visit(ElementOne *e)
+visit(ElementTwo *e)

VisitorOne
+visit(ElementOne *e)
+visit(ElementTwo *e)

Client

Visitor *v=new VisitorOne;
Element *e=new ElementTwo;
e->accept(v); delete v; delete e;v->visit(this);

