
1

Introduction to UML

C++ Object Oriented Programming
Pei-yih Ting
NTOU CS

2

Contents
 Software modeling
 What is UML? What is UML for?
 UML history
 UML artifacts: Things, Relationships, and Diagrams
 Things
 Relationships
 Diagrams
 A simple example
 An elaborated example

3

Introduction to Modeling
 The models we choose have a profound influence

on the solution we provide
 Every model may be expressed at different levels

of abstraction
 The best models are connected to reality
 No single model is sufficient, a set of models is

needed to solve any nontrivial system

4

Importance of Modeling
 Why do we model?

 A model is a simplification at some level of
abstraction

 We build models to better understand the systems
we are developing
To help us visualize
To specify structure or behavior
To provide template for building system
To document decisions we have made

5

Software Modeling
 Traditionally two approaches to modeling a

software system
Algorithmically – becomes hard to focus on as the

requirements change
Object-oriented – models more closely real world

entities

6

UML is a visual modeling language
 “A picture is worth a thousand words.” - old saying

 United Modeling Language:
“A language provides a vocabulary and the rules for
combining words […] for the purpose of communication.
A modeling language is a language whose vocabulary and
rules focus on the conceptual and physical representation
of a system. A modeling language such as the UML is thus
a standard language for software blueprints.”

 from ”UML user guide”

7

Software Invisibility

 Brooks in his famous article ‘No Silver Bullet-Essence
and Accidents of Software Engineering’:

“invisibility is an inherent, not accidental, property of
software”

 The multi-dimensional nature of software does not easily
lend itself to a single 2D or 3D diagrammatic form and
thereby deprives us one of our most powerful conceptual
tools: Our visual and spatial perception.

8

UML History

 UML: Unified Modeling Language
 Grady Booch: Booch notation 1994

 language design, focus on structural aspects esp. inheritance

 James Rumbaugh et al.: OMT 1991
 background in database and Entity Relation modeling

 Evar Jacobson: OOSE 1992
 use cases / requirements

 The Three Amigos joined in 1997
 unified means ”joint effort instead of wars”

9

Usages of UML
 UML is used in the course to

 document designs
 design patterns / frameworks

 represent different views/aspects of design – visualize and
construct designs
 static / dynamic / deployment / modular aspects

 provide a next-to-precise, common, language – specify visually
 for the benefit of analysis, discussion, comprehension…

 abstraction takes precedence over precision!
 aim is overview and comprehension; not execution

10

Building Blocks of UML

 Things

 Relationships

 Diagrams

11

Things
 Structural things

 classes, interfaces, collaborations, use cases, active
classes, components, nodes.

 Behavioral things
 interactions, finite state machines.

 Grouping things
 packages.

 Annotational things
 notes.

12

Relationships

 Dependency

 Association

 Generalization

 Realization

13

Diagrams
1. Class diagram
2. Object diagram
3. Use case diagram
4. Sequence diagram
5. Collaboration diagram
6. Statechart diagram
7. Activity diagram
8. Component diagram
9. Deployment diagram

14

Structural Things
 Structural things are the nouns of UML models.

These are the mostly static parts of a model,
representing elements that are either conceptual or
physical.

15

Structural Things (cont’d)
 Class

A description of a set of objects that share the same
attributes, operations, relationships, and semantics

Attribute
An attribute is a named property of a class that describes a

range of values that instances of the property may hold.

Operation
 An operation is the implementation of a service that can be

requested from any object to affect behavior.

16

Class Diagram

Battery
5V

Switch

Resistor Light

Structure of system (objects, attributes, associations, operations)

17

Structural Things (cont’d)
 Use case

specifies the behavior of a system or a part of a
system and is a description of a set of sequences of
actions, including variants, that a system performs to
yield an observable result of value to an actor

Actor
An actor represents a coherent set of roles that users of use
cases play when interacting with these use cases.

18

Use Case Diagram

SimpleCircuit

FlipOn

FlipOff

ViewLight

User

Functionality from user’s point of view

19

Structural Things (cont’d)
 Interface

a collection of operations that specify a service of a
class or component

 Collaboration
A collaboration defines an interaction and is a
society of roles and other elements that work
together to provide some cooperative behavior that's
bigger than the sum of all the elements.

20

Structural Things (cont’d)
 Active class

An active class is a class whose objects own one or
more processes or threads and therefore can initiate
control activity.

 Component
A component is a physical and replaceable part of a
system that conforms to and provides the realization
of a set of interfaces.

 Node
A node is a physical element that exists at run time
and represents a computational resource.

21

Behavioral Things
Behavioral things are the dynamic parts of UML models.
These are the verbs of a model, representing behavior over
time and space.

 Interaction
An interaction is a behavior that comprises a set of
messages exchanged among a set of objects within a
particular context to accomplish a specific purpose.

 State machine
A state machine is a behavior that specifies the
sequences of states an object or an interaction goes
through during its lifetime in response to events,
together with its response to those events.

22

Interaction Diagram: Sequence Diagram

ResistorSwitch Battery Light

Messages between objects

User
FlipOn() HeatUp() Drain()

Shine()

23

Statechart Diagram (different objects)

Cold Hot

flipSwitchOn

flipSwitchOff

Not
Draining Draining

flipSwitchOn

flipSwitchOff

(Resistor) (Battery)

24

Grouping and Annotational Things
Grouping things are the organizational parts of
UML models.

 Package
A package is a general purpose mechanism for
organizing elements into groups.

Annotational things are the explanatory parts of
UML models.

 Note
A note is simply a symbol for rendering constraints
and comments attached to an element or a
collection of elements.

25

Component Diagram

Course Course
Offering

Student Professor

Course.dll
People.dll

Course
User

Register.exeBilling.exe

Billing
System

class packaging and dependencies
26

Relationships
 Dependency

A dependency is a using relationship that states that
a change in specification of one thing may affect
another thing that uses it, but not necessarily the
reverse. (Usually a class depends on some interfaces
or abstract classes instead of another class.)

 Association
An association is a structural relationship that
specifies that objects of one thing are connected to
objects of another.

27

Relationships (cont’d)
 Aggregation

An aggregation is a special form of association that
specifies a whole-part relationship between the
aggregate (the whole) and a component (the part).

 Generalization
A generalization is a relationship between a general
thing and a more specific kind of that thing.
Sometimes it is called an “is-a-kind-of” relationship.

 Realization
A realization is a semantic relationship between
classifiers, wherein, one classifier specifies a contract
(interface) that another classifier promises to carry out. 28

Diagrams
 Class diagram

A class diagram shows a set of classes, interfaces,
and collaborations and their relationships.

 Object diagram
An object diagram shows a set of objects and their
relationships.

 Use case diagram
A use case diagram shows a set of use cases and
actors and their relationships. A Use case is a literary
form of describing user goals, as a set of scenarios.
A scenario is a sequence of steps describing
interaction between a user and a system.

29

Diagrams (cont’d)
 Sequence diagram

A sequence diagram is an interaction diagram that
emphasizes the time-ordering of messages.

 Collaboration diagram
A collaboration diagram is an interaction diagram
that emphasizes the structural organization of the
objects that send and receive messages.

 Statechart diagram
A statechart diagram shows a state machine,
consisting of states, transitions, events, and
activities.

30

Diagrams (cont’d)
 Activity diagram

An activity diagram is a special kind of a statechart
diagram that shows the flow from activity to activity
within a system.

 Component diagram
A component diagram shows the organization and
dependencies among a set of components.

 Deployment diagram
A deployment diagram shows the configuration of
runtime processing nodes and the components that
live on them.

31

Class Diagrams
 Same diagram – different perspectives

Conceptual
 focus: domain modeling
 “software independent” – no software specific parts

 Specification
 focus: responsibilities and contracts/interfaces
we are talking software i.e. we include software related

aspects: design patterns, frameworks, etc.

 Implementation
 close mapping to actual source code

32

Contracts and Responsibility
 Classes are too close to implementation.
 Instead think in terms of contracts and responsibility!

 UML (and java) approximation is interfaces

InputStream
{abstract}

DataInputStream

<<interface>>
DataInput

OrderReader

realization

dependency

generalization

33

A Simple Problem

1
5 V

light

switch

34

Use Case Diagram

SimpleCircuit

FlipOn

FlipOff

ViewLight

User

Functionality from user’s point of view

35

Class Diagram

Battery
5V

Switch

Resistor Light

Structure of system (objects, attributes, associations, operations)

36

Interaction Diagram: Sequence Diagram

ResistorSwitch Battery Light

Messages between objects

User
FlipOn() HeatUp() Drain()

Shine()

37

Interaction Diagram: Collaboration Diagram

Resistor

Alternative to sequence diagram,
More compact, but harder to interpret

User
1. FlipOn()

1.1 HeatUp()

1.3 Drain()1.2 Shine()

Battery

Switch

Light

sequence number

38

Statechart Diagram

Transitions between states of an object
(Extension of Finite State Machine (FSM) model)

Light
Off

Light
On

flipSwitchOn

flipSwitchOff

39

Statechart Diagram (different objects)

Cold Hot

flipSwitchOn

flipSwitchOff

Not
Draining Draining

flipSwitchOn

flipSwitchOff

(Resistor) (Battery)

40

Activity Diagram

 Actions are states
 shows the flow from activity to activity within a system

Flip Switch On Flip Switch Off

41

More Elaborated Example
 The ESU University wants to computerize their

registration system
The Registrar sets up the curriculum for a semester

One course may have multiple course offerings
 Students select 4 primary courses and 2 alternate courses
Once a student registers for a semester, the billing system

is notified so the student may be billed for the semester
 Students may use the system to add/drop courses for a

period of time after registration
 Professors use the system to receive their course offering

rosters
Users of the registration system are assigned passwords

which are used at logon validation 42

Actors
 An actor is someone or some thing that must

interact with the system under development

Student

Registrar
Professor

Billing System

43

Use Cases
 use case is a pattern of behavior the system exhibits

Each use case is a sequence of related transactions
performed by an actor and the system in a dialogue

 Actors are examined to determine their needs
Registrar -- maintain the curriculum
 Professor -- request roster
 Student -- maintain schedule
Billing System -- receive billing information from

registration

Maintain ScheduleMaintain Curriculum Request Course Roster 44

Use Case Diagram

Student Professor

Maintain Schedule

Maintain Curriculum

Request Course Roster

Billing System

Registrar

45

Sequence Diagram

: Student registration
form

registration
manager

math 101

1: fill in info

2: submit
3: add course

(joe, math 101)

4: are you open?
5: are you open?

6: add (joe)
7: add (joe)

math 101
section 1

46

Collaboration Diagram

: Registrar

course form :
CourseForm

theManager :
CurriculumManager

aCourse :
Course

1: set course info
2: process

3: add course

4: new course

47

Classes

RegistrationForm

RegistrationManager Course

Student CourseOffering

Professor

ScheduleAlgorithm

48

Classes: Attributes and Operations

RegistrationForm

Student

ScheduleAlgorithm

RegistrationManager

addStudent(Course,
StudentInfo)

name
major

Professor
name
tenureStatus

Course
name
numberCredits
open()
addStudent(StudentInfo)

CourseOffering
location
open()
addStudent(StudentInfo)

49

Relationships

RegistrationForm

RegistrationManager

addStudent(Course, StudentInfo) Course
name
numberCredits

open()
addStudent(StudentInfo)

Student
name
major

CourseOffering
location

open()
addStudent(StudentInfo)

Professor
name
tenureStatus

ScheduleAlgorithm

50

Multiplicity and Navigation

1

0..*

0..*
1

1

1..*4

3..10

0..4
1

RegistrationForm

RegistrationManager

addStudent(Course, StudentInfo) Course
name
numberCredits

open()
addStudent(StudentInfo)

Student
name
major

CourseOffering
location

open()
addStudent(StudentInfo)

Professor
name
tenureStatus

ScheduleAlgorithm

offered
Courses

Role name

51

Inheritance

name
RegistrationUser

RegistrationForm

RegistrationManager

addStudent(Course, StudentInfo) Course
name
numberCredits

open()
addStudent(StudentInfo)

Student
major

CourseOffering
location

open()
addStudent(StudentInfo)

Professor
tenureStatus

ScheduleAlgorithm

52

State Transition Diagram

Initialization Open
entry: Register student
exit: Increment count

Closed
Canceled

do: Initialize course

do: Finalize course
do: Notify registered students

Add Student /
Set count = 0

Add student [count < 10]

[count = 10]
Cancel

Cancel

Cancel

53

Component Diagram

Course Course
Offering

Student Professor

Course.dll
People.dll

Course
User

Register.exeBilling.exe

Billing
System

class packaging and dependencies
54

Deployment Diagram

Registration
Database

Library

Dorm

Main
Building

physical setup

55

More Graphical Notations
 Class Diagram: abstract, static

abstract class ParentClass {
int field;
static char field2;
abstract void methodA();
double methodB() {

…
}

}

class ChildClass extends ParentClass {
void methodA() {

…
}
static void methodC() {

…
}

}

ParentClass
field1
field2
methodA
methodB

ChildClass

methodA
methodC

56

More Graphical Notations
 Access Control

class SomeClass {
private int privateField;
protected int protectedField;
public int publicField;
private void privateMethod() {
}
protected void protectedMethod() {
}
public void publicMethod() {
}

}

SomeClass
- privateField
protectedField
+ publicField
- privateMethod
protectedMethod
+ publicMethod

57

More Graphical Notations
 Sequence diagram: message, return, lifeline, activation

class Server {
Device device;
void open() {

…
}
void print(String s) {

device.write(s);
…

}
void close() {

…
}
…

}
class Client {

Server server;
void work() {

server.open();
server.print("Hello");
server.close();

}
…

}

class Device {
void write(String s) {

…
}

}

:Client :Server :Device

work
open

print

close

write

58

References
a. UML Distilled, Applying the Standard Object Modeling Language,

Martin Fowler, (UML 精華:應用標準物件模式語言, 許銀雄譯,
AW/松崗)

b. 物件導向系統分析與設計, 使用 UML 與 C++, 周斯畏編著, 全
華, 92/05, 九十年度非同步遠距教學

c. UML 理論與實作 --- 個案討論與經驗分享, 張裕益著, 博碩,
91/02

d. UML 使用手冊, 張裕益譯, 博碩, 90/10

