
1

Inheritance

C++ Object Oriented Programming
Pei-yih Ting

NTOUCS

2

Contents
 Basic Inheritance

 Why inheritance
 How inheritance works
 Protected members
 Constructors and destructors
 Derivation tree
 Function overriding and hiding
 Example class hierarchy

 Inheritance Design
 Exploring different inheritance structure
 Direct solution to reuse code
 Alternative solutions
 Better design
 Final solutions
 Design rules (IS-A relationship, Proper inheritance)
 Dubious designs

3

Object-Oriented Designs
 An object-orientated design provides a more natural and systematic

framework for specifying and designing a programming solution.
 Program designs are almost always based on the program

specification, i.e. a document describing the exact requirements a
program is expected to achieve.

 Four phases to the object-oriented design process:
 The identification of objects from the program specification.
 The identification of the attributes and behaviours of these

objects.
 The identification of any super-classes.
 The specification of the behaviours of the identified classes.

4

Inheritance
 The distinction between an "object-based language" and an "object-

oriented language" is the ability to support inheritance (or
derivation).

 Composition/aggregation and inheritance are the most important
two ways to construct object hierarchies.

 In the OOD process, after objects are identified from the problem
domain, and attributes and behaviors are modeled with classes in the
design process, the next important phase is the identification of
super-classes in the problem domain

 In the language level, a super-class defines the attributes and
behaviors that are common to all its sub-classes.

 Base class Derived class
Super-class
Parent class

Sub-class
Child class

vs.

5

Basic Inheritance

6

The Basic Problem: Extension
 Imagine you have a class for students

class Student {
public:

Student();
~Student();
void setData(char *name, int age);
int getAge() const;
const char *getName() const;

private:
char *m_name; int m_age;

};
 Want to add fields to handle the requirements for graduate students

class Student {
public:

Student();
~Student();
void setData(char *name, int age, int stipend);
int getAge() const;
const char *getName() const;
int getStipend() const;

private:
char *m_name; int m_age;
int m_stipend;

};

What is the problem with
this design?

7

The Basic Problem: why inheritance
 In the above design

 Student becomes a general purpose class, a set of attributes and
interfaces are used for undergraduate student, while another set
of attributes and interfaces are used for graduate student
… a form with many redundant fields

 In the process of this change, all previously developed programs,
including those implementations of the Student class and those
codes that are the client programs of the Student class, have to be
recompiled…. This change is global, not limited to the part you
plan to add.

8

A Solution – Separate Classes
class Undergraduate {
public:

Undergraduate();
~Undergraduate();
void setData(char *name, int age);
int getAge() const;
const char *getName() const;

private:
char *m_name;
int m_age;

};
class Graduate {
public:

Graduate();
~Graduate();
void setData(char *name, int age, int stipend);
int getAge() const;
const char *getName() const;
int getStipend() const;

private:
char *m_name;
int m_age;
int m_stipend;

};

Why is this still a poor solution?
A client program cannot
treat both classes of objects
in a uniform way, ex.
The library book circulation
system wants to check which
students are holding books
over due, it has to handle
undergraduate and graduate
students with separate pieces
of programs.

i.e. the common characteristics
are not identified

No redundant members, old codes for Student
need only change the name to UnderGraduate.

9

Basic Inheritance in C++
 Declare a class Graduate that is derived from Student

class Graduate: public Student {
public:

Graduate(char *name, int age, int stipend);
int getStipend() const;

private:
int m_stipend;

};

 All the data members (m_name and m_age) and most the member
functions (setData(), getAge(), getName()) of class Student are
automatically inherited by the Graduate class

 New member functions
Graduate::Graduate(char *name, int age, int stipend) : m_stipend(stipend) {

setData(name, age); // this is inherited from Student
}
int Graduate::getStipend() const {

return m_stipend;
}

Student is called the base
class, Graduate is called
the derived class

new data member

new member functions

10

Basic Inheritance (cont’d)
 Usages:

Student student;
student.setData("Mel", 19);
Graduate gradStudent("Ron", 24, 3000);

cout << student.getName() << " is " << student.getAge() <<
" years old undergraduate student\n";

cout << gradStudent.getName() << " is " << gradStudent.getAge() <<
" years old and has a stipend of " << gradStudent.getStipend() <<
" dollars.\n";

m_name = "Mel"
m_age = 19

: Student : Graduate

m_stipend = 3000

m_name = "Ron"
m_age = 24

: Studentctor(), dtor()
setData()
getAge()
getName()

setData()
getAge()
getName()

ctor(), dtor()
getStipend()

Note: A Graduate object is a Student
object because a Graduate object
provides the complete set of interface
functions of a Student object. i.e.
they looks the same from the outside.

11

Basic Inheritance (cont’d)
 This would be illegal

int Graduate::getStipend() const {
if (m_age > 30)

return 0;
return m_stipend;

}

 Private data member of the base class is implicitly declared/defined
but is still private to its derived class. (the boundary of base class is
maintained)

 This is legal
int Graduate::getStipend() const {

if (getAge() > 30)
return 0;

return m_stipend;
}

12

Protected Data and Functions
 Can we give the derived class access to "private" data of base class?

class Student {
public:

Student();
~Student();
void setData(char *name, int age);
int getAge() const;
const char *getName() const;

protected:
char *m_name;
int m_age;

};

 This is now legal
int Graduate::getStipend() const {

if (m_age > 30)
return 0;

return m_stipend;
}

 Who can access protected fields?
 base class and friends of base class
 derived class and friends of derived classes

Note: the encapsulation
perimeter is enlarged
a great deal with
"protected" in your
design

13

Basic Inheritance (cont’d)
 Most of the member functions of the base class are implicitly

inherited for the derived class except
 The constructor (including copy ctor)
 The assignment operator
 The destructor

 They are synthesized by the complier again if not explicitly defined.
The synthesized ctor and dtor would chain automatically to the
function defined in the base class.

14

Inheritance and Constructors
 Rewrite Student using constructor

class Student {
public:

Student(char *name, int age);
~Student();
void setData(char *name, int age);
int getAge() const;
const char *getName() const;

private:
char *m_name;
int m_age;

};

 In this case, the constructor for Graduate fails
Graduate::Graduate(char *name, int age, int stipend) : m_stipend(stipend) {

setData(name, age); // this is inherited from Student
}
error C2512: 'Student' : no appropriate default constructor available

Why does this happen?
Graduate::Graduate(char *name, int age, int stipend)

: Student(), m_stipend(stipend) {
setData(name, age); // this is inherited from Student

} Compiler insert this automatically

chaining

15

Inheritance and Constructors (cont’d)
 In this case, the correct form of the constructor for Graduate is

Graduate::Graduate(char *name, int age, int stipend)
: Student(name, age), m_stipend(stipend) {

setData(name, age); // this is inherited from Student
}
Student::Student(char *name, int age) : m_age(age) {

m_name = new char[strlen(name)+1];
strcpy(m_name, name);

}

 You cannot initialize base class members directly in the
initialization list even if they are public or protected, i.e.

Graduate::Graduate(char *name, int age, int stipend)
: m_age(age), m_stipend(stipend)

error C2614: 'Graduate' : illegal member initialization: 'm_age' is not a base
or member

 Base class guarantee
The base class will be fully constructed before the body of the
derived class constructor is entered

16

Copy Constructor
 Copy constructor is a constructor, member objects and base class

must be initialized through initialization list
 For example:

class Derived: public Base
{
public:

…
Derived(Derived &src);
…

private:
Component m_obj;

};

Derived::Derived(Derived &src): Base(src), m_obj(src.m_obj) {
…

}

Note:
Derived::Derived(Derived &src):

m_obj(src.m_obj)
{

…
}

Compiler adds Base() invocation
automatically

17

Inheritance and Destructors
 If we add a dynamically allocated string data member to Graduate to

store the student's home address, then Graduate requires a destructor
Student::Student(char *name, int age) : m_age(age) {

m_name = new char[strlen(name)+1];
strcpy(m_name, name);
cout << "In Student ctor\n";

}
Student::~Student() {

delete[] m_name;
cout << "In Student dtor\n";

}

Graduate::Graduate(char *name, int age, int stipend, char *address)
: Student(name, age), m_stipend(stipend) {
m_address = new char[strlen(address)+1];
strcpy(m_address, address);
cout << "In Graduate ctor\n";

}
Graduate::~Graduate() {

delete[] m_address;
cout << "In Graduate dtor\n";

}
18

Inheritance and Destructors (cont’d)
 What happens in main()

void main() {
Graduate student("Michael", 24, 6000, " 8899 Storkes Rd.");
cout << student.getName() << " is " << student.getAge() << " years old and "

<< "has a stipend of " <, student.getStipend() << "dollars.\n"
<< "His address is " << student.getAddress() << "\n";

}
The output is:
In Student ctor
In Graduate ctor
Michael is 24 years old and has a stipend of 6000 dollars.
His address is 8899 Storkes Rd.
In Graduate dtor
In Student dtor

 The compiler automatically calls each dtor when the object exits.
 The dtors are invoked in the opposite order of the ctors

 In destructing the derived object, the base object is still in scope and
functioning correctly.

chaining

19

Chaining of Assignment Operator
 By default, the compiler adds a “bit-wise copy” assignment operator

for every class which you do not declare an assignment operator
 If you have a class hierarchy where a class Derived

inherits from a class Base.
 There are three cases for the compiler synthesized

assignment operators:
 If both classes do not define assignment operator: both are bit-wise copy
 If Base& Base::operator=(Base &) is defined and

Derived& Derived::operator=(Derived &) is not, then compiler synthesizes
Derived& Derived::operator=(Derived &rhs) {

Base::operator=(rhs);
….
return *this;

}
 If you define Derived& Derived::operator=(Derived &rhs) yourself, you have

to call Base::operator=(rhs); in Derived::operator=(), otherwise the Base part
of the object would not be copied.

Base

Derived

20

Multiple-derived Classes
 Let us add a new type of graduate student

class Student
{
public:

Student(char *name, int age);
~Student();
void setData(char *name, int age);
int getAge() const;
const char *getName() const;

private:
char *m_name;
int m_age;

};

class Graduate: public Student
{
public:

Graduate(char *name, int age, int stipend);
int getStipend() const;

private:
int m_stipend;

};

class ForeignGraduate: public Graduate
{
public:

ForeignGraduate(char *name, int age,
int stipend,
char *nationality);

~ForeignGraduate()
const char *getNationality();

private:
char *m_nationality;

};

21

Multiple-derived Classes (cont’d)
ForeignGraduate::ForeignGraduate(char *name,

int age, int stipend, char *nationality)
: Graduate(name, age, stipend)

{
m_nationality = new char[strlen(nationality)+1];
strcpy(m_nationality, nationality);

}

ForeignGraduate invokes the ctor of its direct base class, Graduate

Graduate::Graduate(char *name, int age, int stipend)
: Student(name, age), m_stipend(stipend)

{
}

Graduate, in turn, invokes the ctor of its direct base class, Student

Student::Student(char *name, int age)
: m_age(age)

{
m_name = new char[strlen(name)+1];
strcpy(m_name, name);

}

Student

Graduate

ForeignGraduate

direct base class

direct base class

Indirect base class

22

Behavior Changing (Hiding)
 In the previous example, suppose we would like to have a display()

member function in the Student class that shows the details of a
Student object on the screen, ex.

void Student::display() const {
cout << m_name << " is " << m_age << "years old.\n";

}

 The Graduate class automatically inherits this member function.
However, the output of this function for a Graduate object is in a
way short of many important data.

 We would like to redefine this function in the derived class –
Graduate, such that it will show the stipend and address together.

void Graduate::display() const { // masks the inherited version of display()
cout << getName() << " is " << getAge() << " years old.\n";
cout << "He has a stipend of " << m_stipend << " dollars.\n";
cout << "His address is " << m_address << ".\n";

}

 Note: the function signature is exactly the same as in the base class.

23

Behavior Changing (cont’d)
 Example for the previous definition

Student student1("Alice", 20);
Graduate student2("Michael", 24, 6000, "8899 Storkes Rd.");

student1.display(); // Student::display()
cout << \n";
student2.display(); // Graduate::display()

Output:
Alice is 20 years old.

Michael is 24 years old.
He has a stipend of 6000 dollars.
His address is 8899 Storke Rd.

 Note: display() interface usually can enhance the encapsulation, can
replace the functionality of accessor functions

m_name = "Mel"
m_age = 19

: Student
ctor(), dtor()
getAge()
getName()
display()

: Graduate

m_stipend = 3000

m_name = "Ron"
m_age = 24

: Student
getAge()
getName()
display()

ctor(), dtor()
getStipend()
display()

24

Behavior Changing (cont’d)
 You can avoid the redundancy of the common code in the inherited

version of display() (to be exactly Student::display()) and
Graduate::display() by the following

void Graduate::display() const // masks the inherited version of display()
{

Student::display(); // invoke the inherited function
cout << "He has a stipend of " << m_stipend << " dollars.\n";
cout << "His address is " << m_address << ".\n";

}

 The functions defined in the base class are OK for most derived
classes. Only some of them need to be changed in the derived
classes.

Square

TwoDimShape

Rectangle Triangle

calculateArea() width*height

calculateArea()
1/2*width*height

25

Class Hierarchy
 sub-class super-class relationship can lead to a class hierarchy or

inheritance hierarchy.
Example

Machine

Appliance Vehicle Computer

Van Car Truck

Mini Delivery Limo Sports Dump Pickup

26

A Real-World Example Of Inheritance
 Microsoft Foundation Class Version 6.0

 A tree-style class hierarchy

 Java Class Library
 …

27 28

Inheritance Design

29

Exploring Solutions to Inheritance
 The University database program

 We would like to add a class Faculty, whose attributes include
m_name
m_age
m_address
m_rank
there is no stipend

 Should Faculty be derived from Student or Graduate or none of both?
 Let us first try inheriting Faculty from Graduate since the two

groups have so much data in common

Student

Graduate

m_name
m_age

: Student : Graduate

m_stipend
m_address

m_name
m_age

: Studentctor(), dtor()
setData()
getAge()
getName() setData()

getAge()
getName()

ctor(), dtor()
getStipend()
getAddress()

30

Exploring Solutions (cont’d)
 Deriving Faculty from Graduate makes a very efficient reuse of codes

class Faculty: public Graduate {
public:

Faculty(char *name, int age, char *address, char *rank);
~Faculty();
const char *getRank() const;

private:
char *m_rank;

};

 We are forced to ignore Graduate::m_stipend, in ctor
Faculty::Faculty(char *name, int age, char *address, char *rank)

: Graduate(name, age, 0, address) {
m_rank = new char[strlen(rank)+1];
strcpy(m_rank, rank);

}

 However, the client can still do this
Faculty prof("Lin", 40, "#2 Bei-Ning", "Associate Professor");
cout << prof.getStipend();

This is NOT a good solution!

Student

Graduate

Faculty

Zero is a dummy
value for the stipend

You can spare a data member but cannot
turn off an interface of the base class.

31

Another Possible Solution
 How about deriving Faculty from Student

because Faculty requires all of the data from
Student

class Faculty: public Student {
public:

Faculty(char *name, int age, char *address, char *rank);
~Faculty();
const char *getRank() const;
const char *getAddress() const;

private:
char *m_address;
char *m_rank;

};
 What is the problem now?

 Faculty duplicates some codes in Graduate: m_address related
 What happens if Student adds a field for "undergraduate advisor"?

The problem is that Faculty is intrinsically not a Student.
“Inheritance SHOULD NOT be designed based on solely

implementation considerations – eg. code reuse.”

Student

Graduate Faculty

32

A Better Design
 Create a Person class and put everything common to all people in

that class, all other classes are derived from this class.

Student is replaced by
Undergraduate

 Should we eliminate UnderGraduate and use
only Person in its place?

 Should Graduate be derived from Undergraduate?

Undergraduate Graduate Faculty

Person
getAge()
getName()
m_age
m_name

getStipend()
getAddress()
m_stipend
m_address

getRank()
getAddress()
m_rank
m_address

Is there any redundancy?

33

Adding an Office class
 Codes related to address could be merged into a single copy.
 How about encapsulating all data pertaining to the address in a class?

Anyone who needs an office can then inherit from Office.

 But Graduate and Faculty still need to
inherit name and age categories so this
design forces us to this inheritance

Office

Graduate Faculty

Person

Undergraduate Office

Graduate Faculty

Bad design!! Problematic!!
What's wrong?
• If the Office has a clean() method,

The Faculty automatically has a
clean() method. What does it mean?

• What if a faculty has two offices?

34

Code for Office Solution
class Office: public Person {
public:

Office(char *name, int age, char address);
~Office()
const char *getAddress() const;

private:
char *m_address;

};
class Graduate: public Office {
public:

Graduate(char *name, int age, int stipend, char *address);
int getStipend() const;

private:
int m_stipend;

};
class Faculty: public Office {
public:

Faculty(char *name, int age, char *address, char *rank);
~Faculty();
const char *getRank() const;

private:
char *m_rank;

};

35

Final Solution
 Instead of having Graduate and Faculty inherit from Office, we store

an Office object within each classes
 Return to our original inheritance design (good design)

 The office class exists separately, without regard to any inheritance
 Codes:

class Office {
public:

Office(char *address);
~Office();
const char *getAddress() const;

private:
char *m_address;

};

Person

Graduate FacultyUndergraduate Office

36

Final Solution (cont’d)
class Graduate: public Person {
public:

Graduate(char *name, int age, int stipend, char *address);
int getStipend() const;
const char* getAddress() const;

private:
int m_stipend;
Office m_office;

};

 Note: the data part m_address in Graduate and Faculty is bound to
replicate. However, the code to handling m_address is
reduced to a single copy, i.e. Office::getAddress(). If the
address has a certain format to follow, the saved codes would
be more.

class Faculty: public Person
{
public:

Faculty(char *name, int age, char *address, char *rank);
~Faculty();
const char* getAddress() const;
const char *getRank() const;

private:
char *m_rank;
Office m_office;

};

const char* Graduate::
getAddress() const {

return m_office.getAddress();
}

delegation

37

Further Abstraction
 Sometimes, if the relationships between Graduate or Faculty objects

and objects of some other classes are uniform, we can model their
relationships in the following way

class PersonnelWithOffice {
public:

const char *getAddress() const;
private:

Office m_office;
};

 If there could be several offices for a certain personnel, the private
member could be a container, ex. vector<Office> m_offices;

Person

Graduate Faculty

Undergraduate OfficePersonnelWithOffice

Note: in the above class diagram
each Graduate object has
an association with an
Office object

38

Design Rules for Inheritance
 Primary guide: Class A should only be derived from Class B if

Class A is a type of Class B
 A student is a person

 Inheritance is called an IS-A relationship
 What we mean by “is-a” in programming is “substitutability”.

Eg. Can an object of type Student be used in whatever place of
an object of type Person? This is described in terms of their
interfaces (the promises and requirements), instead of their
implementations. If yes, Student can inherit Person.

 Inheritance should be “natural”
 The second case is a bad inheritance

even if Undergraduate is internally
identical to Student.

Student

Graduate

Undergraduate

Graduate

Proper inheritance Improper inheritance

B

A

Person

Student

IS A

I bet this def is formal
but still abstract!!

39

Design rules (cont’d)
 Common code and data between classes can be shared by creating a

base class (one of the two primary benefits we can get from
inheritance)

 Never violate the primary objectives for the sake of code sharing!
 Bad cases of inheritance (improper inheritances) are often cured

through composition (containment / aggregation)

This is referred to as the HAS-A relationship.
It operates in the form of delegation.

Undergraduate Graduate Faculty

Person
m_age
m_name

m_office
m_stipend

m_office
m_rank

m_advisor

Office

Graduate Faculty

Faculty

Office
40

Dubious Examples of Inheritance
 Taken from Deitel & Deitel, C: How to program, p. 736

class Point {
public:

Point(double x=0, double y=0);
protected:

double x, y;
};
class Circle: public Point {
public:

Circle(double radious, double x, double y);
void display() const;

private:
double radius;

};
 Design rationale: A circle is a type of point. The radiuses of some

circles are zero. ... Purely mathematical idea!
 Critiques: A circle is not a point. Instead, a circle has a point

corresponding to its center. Substitutability: Can a circle be used as
a point in constructing the four corners of a rectangle? Can a circle
be used as the center of another circle?

void Circle::display() {
cout << "Center = " << c.x << ", " << c.y

<< "]; Radius = " << radius;
}

41

Some Other Dubious Examples
 Ex 1: A stack derived from a linked list. What are the problems?

 This stack can then be operated as a linked list, the
mechanism of a stack would be completely broken.

 If you try to turn off the insert()/delete() interface that could
manipulate entries in any order, you basically make the Stack
class different from the LinkList base class in terms of
operations. i.e. Stack IS-NOT LinkList.

 Ex 2: A file pathname class derived from a string class
note: a pathname IS indeed implemented by a string, but it is a

special string that cannot be longer than 32 characters
 Design rule: The derived class extends the base class, not the other

way around.

base class
derived class

base class
derived class

42

Summary

Office
m_IPAddress

CampusResidence
m_rent
m_roomMates

Residence
m_location
m_phoneExt

Person
m_age
m_name

Graduate
m_stipend

Faculty
m_salary
m_rank

Undergraduate
m_advisor
m_tuition

Student
m_home
m_courses

Staff
m_wage
m_job

Employee
m_office
m_department

Department
Course

ResidenceManager
m_residences

