
1

Common Memory Errors

C++ Object Oriented Programming
Pei-yih Ting
NTOU CS

2

Main Categories of Errors
 Memory leakage

allocate, allocate, allocate …. without free
 Unallocated memory

use memory without preparation
 Memory corruption

underrun / overrun your buffer, runaway pointer
 Illegal access

use memory after you free it, runaway (wild) pointer,
null pointer access

Early Versions of Microsoft Windows System/ Tools are
good examples, you blame the M$ company for it, but you
are following suit unconsciously

3

Your First Memory Trap in C

 Passing an arbitrary integer as the address
 Example:

int x=0;
….
scanf("%d", x);

Often cause illegal memory access, fortunately, abort
the program execution on the spot

 Sometimes, unfortunately, this error does not halt the
program right at this line ….

 Should be scanf("%d", &x);

4

Where is the address?
 Case 1: address got lost

{
char *leakage1;
leakage1 = (char *) malloc(5*sizeof(char));

}
// There is no way to access that 5-byte memory any more.

 Case 2: address got overwritten
char *leakage2;
leakage2 = (char *) malloc(5*sizeof(char));

...
leakage2 = "hello";

Cause memory leakages, some of your virtual memory will not be
used by your process anymore? Your program is going to crash
someday for insufficient resources. Don’t blame the system for it!

5

Use Memory W/O Allocation
 Oh! Make sure the chair is in place before you sit down!!
 Case 1: reading something out of the air

char *msg;
printf("%s\n", msg); // printing something, but WHAT is it?

 Case 1':
int *ptr;
somefun(*ptr);

 Case 2: writing something into the air
char *buffer;
strcpy(buffer, "some data"); // where do you think you copy to
scanf("%s", buffer); // where do you think you read into

 Case 2':
int *ptr;
*ptr = 10;

6

Use Memory W/O Allocation
 Sometimes CAUSE

 Illegal memory access
 If the memory address is 0 or pointed to somewhere you have

no right to read/write in the memory
 Turbo C/ Borland C famous error: null pointer assignment

Unexpected (but legal) memory content changes
Wild pointers: your code might overwrite some useful data in

the program (maintained by yourself or by your teammate)

 They are all RUN TIME errors. Most troublesome, they
are not necessarily halting on each execution or on a
specific line of code

7

Overrun The Buffer
 The notorious BUFFER OVERFLOW attacks:

 created daily, casually by numerous naïve, benign programmers
 Do NOT think that you ruin at most your program only!!

If your program is privileged, you open your system up!!

 Case 1:
char *buf;
buf = (char *) malloc(5*sizeof(char));
strcpy(buf,"abcde");

 Case 2:
int data[1000], i;
for (i=0; i<=1000; i++)

data[i] = i;

You must have destroy something useful in the memory!!

although still not harmful in
these two example cases.

8

CERT Advisories
 http://www.cert.org/advisories
 Starting from 1988, Buffer Overflow vulnerabilities are the most

common break-in courses.
 2003 Jan-Mar: 7/13 advisories are about Buffer Overflow

 CA-2003-12 :Buffer Overflow in Sendmail Mar 29 2003
 CA-2003-10 :Integer overflow in Sun RPC XDR library routines

Mar 19 2003
 CA-2003-09 :Buffer Overflow in Core Microsoft Windows DLL

Updated Mar 19 2003
 CA-2003-07 :Remote Buffer Overflow in Sendmail Mar. 3, 2003
 CA-2003-04 :MS-SQL Server Worm(SQL Slammer) Jan 25 2003
 CA-2003-03 :Buffer Overflow in Windows Locator Service

Jan 23 2003
 CA-2003-01 :Buffer Overflows in ISC DHCPD Minires Library

Jan 15 2003

9

Example: Changing the control flow
 What is the output of the following program?

void function(int a, int b, int c) {
char buffer[5];
int *ret;
ret = buffer + 28;
(*ret) += 10;

}
int main() {

int x;
x = 0;
function(1,2,3);
x = 1;
printf("x = %d\n",x); // unmodified by x=1;!!
return 0;

} Output: x = 0

3

retaddr
1
2

base ptr

buffer+28

HIMEM

…

(buffer+28)
(buffer+24)

SYSTEMSYSTEM
STACKSTACK

int* ret
buffer

&a
&b
&c

retaddr

retaddr+10

tampering statement

10

Example: modified function pointer
void fun1() {

…
}
typedef void (*FP)();
void main() {

FP fp;
char buffer[8];
fp = fun1;

…
*(FP *)(buffer-4) = fun2;

// or *(char**)(buffer-4) = (char *) fun2;
…

(*fp)();
}

void fun2() {
…

}

tampering statement

Which function does it call?

11

Buffer Overflow Attack
 Cause the program to jump to somewhere?

void function(int a, int b, int c) {
char buffer[5];

}

int main() {
int x;
x = 0;
function(1,2,3);
x = 1;
printf("x = %d\n",x); // unmodified by x=1;!!
return 0;

}
 What happened if the destination has a segment of

malicious code!!!

retaddr

retaddr+10

3

retaddr
1
2

base ptr

HIMEM

…

(buffer+28)
(buffer+24)

SYSTEMSYSTEM
STACKSTACK

buffer

&a
&b
&c

Problematic statement

int *ret= buffer + 28; (*ret) += 10;gets(buffer);

12

Unsafe functions in C library
 strcpy(char *dest, const char *src);
 strcat(char *dest, const char *src);
 getwd(char *buf);
 gets(char *s);
 fscanf(FILE *stream, const char *format, ...);
 scanf(const char *format, ...);
 sscanf(char *str, const char *format, …);
 realpath(char *path, char resolved_path[]);
 sprintf(char *str, const char *format, ...);
 syslog
 getopt

13

String Operations Without '\0'
 Cause buffer overflow

char buf1[5], buf2[5];
buf1[0] = 'a';
buf1[1] = 'b';
strcpy(buf2, buf1); // don’t know what would happen,

// buf2 most probably overwritten
...

printf("%s\n",buf1); // don’t know what would happen,
// the printf statement does not just print
// out “ab” but “ab(*&%^^$$%&*^…”

14

Underrun The Buffer
 Case 1:

char *buf;
buf = (char *) malloc(5*sizeof(char));

... buf-- … buf-- …
*buf = '\0';

 Case 2:
char buf[5];

...
*(buf - 2) = 'a';

 Case 3:
int x;
char y[4];
scanf("%d", &x); scanf("%d", &y[2]);

'\0'
buf

buf-2

x

y

Extraneous pointer usages are evil.

15

Probe into the Memory
 Using compiler listing to see the memory layout

// cl /FAs /FatestBuf.asm testBuf.c
#include <stdio.h>
void main()
{

int x;
char y[4];
scanf("%d", &x);
printf("x=%d\n", x);
printf("&x=%p &y=%p &y[2]=%p\n", &x, y, &y[2]);
printf("%02x %02x %02x %02x %02x %02x %02x %02x\n",

y[0],y[1],y[2],y[3],y[4],y[5],y[6],y[7]);
scanf("%d", &y[2]);
printf("%02x %02x %02x %02x %02x %02x %02x %02x\n",

y[0],y[1],y[2],y[3],y[4],y[5],y[6],y[7]);
printf("x=%d %d\n", x, *((int *)&y[2]));

}

10
x=10
&x=0012FF7C &y=0012FF78 &y[2]=0012FF7A
00 00 00 00 0a 00 00 00
20
00 00 14 00 00 00 00 00
x=0 20

x

y

7C

78

7A

16

Visual Studio Environment

1 2

3

17

Compiler Assembly Listing
$SG772 DB '%d', 00H
$SG776 DB '%d', 00H
_x$ = -4
_y$ = -8
…
lea eax, DWORD PTR _x$[ebp]
push eax
push OFFSET FLAT:$SG772
call _scanf
…
lea ecx, DWORD PTR _y$[ebp+2]
push ecx
push OFFSET FLAT:$SG776
call _scanf
…

x

y

7C

78

7A

scanf("%d", &x);

scanf("%d", &y[2]);

18

Free Buffer Twice
 Cause runtime memory management internal error

char *buf;
buf = (char *) malloc(5*sizeof(char));
free(buf);

...
free(buf);

char *buf;
buf = new char[200];
delete[] buf;

…
delete[] buf;

19

Illegal Free
 Free an address not previously allocated:

char *buf, *ptr;
buf = (char *) malloc(5*sizeof(char));
ptr = buf; … ptr++; … ptr--; … ptr++; …
free(ptr);

 Free an automatic variable, a static variable, or a global
variable:

char *ptr, array[100];
...
ptr = array;
free(ptr);

20

Illegal Free (cont’d)
 Free null pointer:

char *buf=0;
free(buf);

 Free a character string constant
char *buf;
buf = (char *) malloc(6*sizeof(char));
…
buf = "hello";
…
free(buf); // buf now contains the address of the string constant

21

Assess Freed Memory
 Case 1:

char *buf;
buf = (char *) malloc(5*sizeof(char));

...
free(buf);
strcpy(buf, "memory bomb");

 Case 2:
char *fun() {

char *ptr, buf[10];
...
ptr = buf;
return ptr;

}
 it is a common practice to forget

any freed pointer contents

char *dataPtr, buf[20];
dataPtr = func();

…
strcpy(buf, dataPtr);

...
strcpy(dataPtr, buf);

free(ptr);
ptr = 0;

22

Dangling Pointers
 You might think that you would never commit the stupid

errors in the previous slide.
 Modified case 1:

char *buf, *buf2;
buf = (char *) malloc(5*sizeof(char));
buf2 = buf; // save the pointer somewhere else

...
free(buf);

…
strcpy(buf2, "memory bomb through the dangling pointer");

23

Pointer Arithmetic Error
int (*ptr)[10], buf[20][10];

ptr = buf;
*(int *)(ptr + 199*sizeof(int)) = 20; // Is it buf[19][9]?

// should be ptr[19][9] = 20;
// or *((int *)(ptr + 19) + 9) = 20;
// or *((int *)ptr + 199) = 20;

Careless pointer arithmetic produces wild pointer

24

Stack Overrun
 Case 1: large auto memory blocks

void func()
{

double image[2000][2000];
...

}

Compiler would generate the code and hope that your
system have this number of virtual memory allocated as
the runtime stack

2000*2000*8 = 32 M bytes
Visual C++ uses 1 M bytes stack as default, you can use

/F2000000 to set the stack size as 2000000 bytes

25

Stack Overrun
 Case 2: deep recursive function call

void bizarrePrint(int n, int buf[]){
int localBuf[1000];
int i, pivot;
if (n == 1){

printDigit(n, buf);
return;

}
else {

for (i=0; i<5; i++) {
pivot = n*i/5;
copyDigit(localbuf, n/5, &buf[pivot]);
bizarrePrint(n-1, localbuf);

}
}

}

int i;
int buf[2000];
for (i=0; i<2000; i++)

buf[i] = i;
bizarrePrint(2000, buf);

2000 * 1000 * 4 = 8 M bytes

26

Unchecked Memory Allocation

 Case: malloc() might fail
int i, *ptr;
int n = 25000;
ptr = (int *) malloc(n*sizeof(int));
for (i=0; i<n; i++)

ptr[i] = i;

Cause illegal memory access if the allocation failed

27

Detecting Memory Errors
 MFC DLL
 VC++ Runtime Support
 Electric Fence
 wpr
 stack guard
 gcc (a version of it)
 object counts
 Memory checking API
 Valgrind on Ubuntu

28

Using MFC DLL
 #include <afx.h> in all your source files (at least the file

that contains main())
 Using new/delete instead of malloc/free
 Check out MFC DLL

1

2

29

Using MFC DLL
 Source

#include <afx.h>
void main() {

int *ptr;
ptr = new int[100];
ptr[0] = 1;

}

 Sample error messages
Detected memory leaks!
Dumping objects ->
{45} normal block at 0x003426C0, 400 bytes long.
Data: < > 01 00 00 00 CD CD CD CD CD CD CD CD CD

Object dump complete.

30

VC Runtime Leakage Detection (1/5)
 memory_leak.h

#ifndef MEMORY_LEAK_H
#define MEMORY_LEAK_H

/* 1 to test for memory leaks */
#define TEST_MEM_LEAKS 1
#ifdef TEST_MEM_LEAKS

/* allocation # at which to break */
#define TEST_MEM_LEAKS_BREAK_NUM 0
/* 1 to break at an allocation*/
#define TEST_MEM_LEAKS_BREAK 1

void set_initial_leak_test();

#endif
#endif

Step1: Initially set to zero, such that
the memory manager would
not break at any allocation.

Step2: set to a desired leakage object
number so that the program
breaks at the allocation of that
object (you can identify which
object is leaked in this way)

31

VC Runtime Leakage Detection (2/5)
 memory_leak.cpp

#include "memory_leak.h"

#include <stdio.h>
#include <crtdbg.h>

void set_initial_leak_test(){

int tmpFlag;

/* set flag to automatically report memory leaks at image exit */
printf("\n[Leak test being performed]\n");

tmpFlag = _CrtSetDbgFlag(_CRTDBG_REPORT_FLAG);
…

32

VC Runtime Leakage Detection (3/5)
 In your program:

Step 1: #include "memory_leak.h"
Step 2: call set_initial_leak_test() at the start of main()
Step 3: #define TEST_MEM_LEAKS_BREAK_NUM 0
Step 4: compile your program, run your program
Step 5: observe the leakage report, ex.

[Leak test being performed]
Detected memory leaks!
Dumping objects ->
{103} normal block at 0x009C6108, 10 bytes long.
Data: < > CD CD CD CD CD CD CD CD CD CD
Object dump complete.

Step 6: #define TEST_MEM_LEAKS_BREAK_NUM 103

cl /MLd /Zi …

33

VC Runtime Leakage Detection (4/5)
Step 7: compile your program, run your program again
Step 8: your program should now break at the allocation

of that specified object. If you start the debugger

you can use call stack to see where your program
allocates the leaked storage.

34

VC Runtime Leakage Detection (5/5)
Step 9: If you don’t start the debugger, you will observe

the leakage report
[Leak test being performed]
Detected memory leaks!
Dumping objects ->
{102} normal block at 0x009C60D0, 10 bytes long.
Data: < > CD CD CD CD CD CD CD CD CD CD
…
{64} normal block at 0x009C2C80, 10 bytes long.
Data: < > CD CD CD CD CD CD CD CD CD CD
{63} normal block at 0x009C2C48, 10 bytes long.
Data: < > CD CD CD CD CD CD CD CD CD CD
Object dump complete.
Press any key to continue

35

Memory Checking Win 32 API
#include <windows.h> // or #include <afx.h>
void mem() {

MEMORYSTATUS stat;
GlobalMemoryStatus(&stat);
printf ("%ld percent of memory is in use.\n",

stat.dwMemoryLoad);
printf("TotalPhys=%d AvailPhys=%d\n",

stat.dwTotalPhys, stat.dwAvailPhys);
printf("TotalVirtual=%d AvailVirtual=%d\n",

stat.dwTotalVirtual, stat.dwAvailVirtual);
}

36

DO NOT BE A NUISANCE!!
 Naturally you don’t want to be a TROUBLE in a group
 If everybody knows that you are a trouble, everybody can

get used to it through some kinds of accommodation.
 Sometime, it is even worse that you are a trouble but you

don’t know it.
 Having a programmer in a software team that ABUSE the

memory in any of the previously listed ways is painful.
 The biggest problem is that he is completely unaware of

his blunder because the errors most likely do not show up
immediately and he keeps generating bugs and even
accusing others for the bugs.

37

Some C++ Memory Errors
 Unmatched new/new[] and delete/delete[]
 Pointer type coercion might change the values of stuct
 Allocating memory for data members without designing

copy constructor, assignment operator, and destructor.
 Missing virtual destructor in the base class.
 Incorrect down cast

38

Implementing Object Counts
 Sometimes, without the help of tools, you would like to

monitor at run time whether your program has any
unreleased objects and avoid memory leakages from the
ground up.

 Implement with class variable
class MyClass {
…
public:

MyClass();
~MyClass();
static void printCounts();

private:
static int objectCounts;

…
};
…
int MyClass::objectCounts=0;

MyClass::MyClass() {
objectCounts++;

}
MyClass::~MyClass() {

objectCounts--;
}
void MyClass::printCounts() {

cout << "Class MyClass "
“active objects: "

<< objectCounts << endl;
}

