o 0o o o o o

More Classes

C++ Object Oriented Programming
Pei-yih Ting
NTOU CS

Contents

< Object composition and constructors
< Initialization of object within object
< Returning pointers

< this pointer

< Exploiting implicit references

<+ Class conversion

< Static data members

<+ Static member functions

Object Component

< Sometimes you would like to use a well designed object as a

Solving The Initialization Problem

First try: illegal syntax, calling Person ctor within SaleDept ctor

, 1L.e.

component to help accomplishing the task
< In that case, we have an object within another object

< Example:
class Person {
public:
Person(const char *name);
~Person();
char *getName() const;
private:
char *m_name;

class SaleDept {
public:

SaleDept(const char *manager,

const char *clerk);
void listMembers() const;
private:
Person m_manager;
Person m_clerk;

void main() {
SaleDept *saleDept;
saleDept =

new SaleDept(**Jamie’, ""Paul™);

myRoom->listMembers();
delete saleDept;

}
SaleDept::SaleDept(

const char *managerName,

const char *clerkName) {
}
NOT working!!
error C2512: 'Person’ :
no appropriate default
constructor available

O

SaleDept::SaleDept(const char *managerName, const char *clerkName) {
m_manager(managerName);
m_clerk(clerkName);

Second try: not a good one, require default ctor, extra CPU time
depending on some uncertain factors

SaleDept::SaleDept(const char *managerName, const char *clerkName) {
m_manager = Person(managerName);
m_clerk = Person(clerkName);

Third try: a safe and syntactically legal solution, but undesirable

class Person {

Person(); // empty ctor
void setName(const char *name);

Correct solution: using initialization list

SaleDept::SaleDept(const char *managerName, const char *clerkName)
: m_manager(managerName), m_clerk(clerkName) {

Returning Pointers

< The function getName() violates data encapsulation

class Person {
public:
Person(const char *name);
~Person();
char *getName() const;
private:
char *m_name;

< Why? Consider the following code: looks OK
void SaleDept::listMembers() const {

cout << m_manager.getName() << " is the manager of the sale department and "
<< m_clerk.getName() << " is the clerk.\n"";

}

<+ What would happen if it were written like this
void SaleDept::listMembers() const { Interfering the integrity of

char *tempString = m_manager.getName(); the private data of Person class
tempString[0] = '#'; j P
cout << tempString << " is the manager of the sale department and **

<< m_clerk.getName() << " is the clerk.\n"";

Solution to Data Encapsulation Problem

Simple solution provided by the grammar to prevent incidental
breaking of the encapsulation

class Person { unintentional
public:
Person(const char *name);
~Person(); .
const char *getName() const; Won't be able to mutate
private: the content of m_name
char *m_name; within this member function

const char *Person::getName() const {
return m_name;

void SaleDept::listMembers() const {
const char *tempString = m_manager.getName();
[/l tempString[0] = '#'; // compiler rejects this statement
cout << tempString << " is the manager of the sale department and "
<< m_clerk.getName() << " is the clerk.\n"";

}
Other solutions? use a string object

this pointer

< In the first C++ translator, by Stroustrup, C++ functions is
translated to pure C functions. How can a function access some
variables (those member variables) not defined in that function? EXx.

class Grades {
public:

Grades(int score); void main() {

int getScore(); Grades student1(95), student2(85), student3(45);
private: cout << studentl.getScore();
}: Int m_score; cout << student2.getScore();

cout << student3.getScore();

int Grades::getScore() { } which variable is this referring to

return m_score;

< The compiler generates an implicit reference to the object which
called the function and passes it into the function as an argument.

< Explicitly referencing the object

int Grades::getScore() {
return this—>m_score;

The primary purpose of this pointer

The this pointer is most commonly used when objects need to be
linked to other objects

class LinkedList { currentNode j > nextNode
public: _ _ previous previous

void insert(LinkedList *newNode); next |— 1 next
private:

LinkedL.ist *previous;

LinkedList *next; currentNode newNode 79 > nextNode
¥ previous| @ OTevious
We want to insert a new node L_Next 7 o L next

into the list after another object °
with currentObject—>insert(newObject);

The actual way to achieve the goal is using this pointer

void LinkedList::insert(LinkedList *newNode) {
newNode—>next = next; /I implicitly referring the member of current object
newNode—>previous = this; // or next->previous
next—>previous = newNode;
next = newNode;

Exploiting Implicit References

< Suppose we want to add a function to class Grades that checks if
two objects contain the same score

< Here is the call in main()

if (gradel.equal(grade2))
cout << "'same scores'";
else
cout << "'different scores"";

<+ Here is the function

bool Grades::equal(Grades &secondScore) {
return m_score == secondScore.m_score;

< Do not ignore implicit dereferencing

bool Grades::equal(Grades &firstScore, Grades &secondScore) {
return firstScore.m_score == secondScore.m_score;

Note how clumsy the call is to this function
if (gradel.equal(gradel, grade2))

Type Conversion Constructor

< Suppose we would like to convert raw minutes to Time object

;ﬁé?.g'me { void Time::normalize() {

Time(): ‘\‘ m_minutes += m_seconds / 60;

Time(int hours, int minutes, int seconds); m_?]econds_= m_seconds/‘?OG_O;
Time(int rawMinutes); i m_hours+=m_minutes/60;
private: / m_minutes = m_minutes % 60;
intm hours: ' m_hours = m_hours % 24;
int m_minutes; }
int m_seconds; .
void normalize();
b
Time::Time(): m_seconds(0), m_minutes(0), m_hours(0) {
}
Time:: Time(int hours, int minutes, int seconds)
: m_hours(hours), m_minutes(minutes), m_seconds(seconds) {
normalize();

Time:: Time(int rawMinutes): m_seconds(0), m_minutes(rawMinutes), m_hours(0) {

normalize();
} 10

Type Conversion Constructor

<+ Usage:

void main() {
int x =125;
Time object;
object = Time(125); // temporary object, assignment operator
object = 125;
object = x;
object = (Time) x;

} implicit invocation of type conversion ctor,
construct a temporary object,
assignment operator

11

Class Conversion

class Celsius; // forward declaration

class Fahrenheit {

public:
Fahrenheit(int temperature);
Fahrenheit(Celsius &cTemperature);
int getTemperature() const;
void display() const;

private: _ /" Fahrenheit::Fahrenheit(Celsius &cTemperature) {
int m_temperature; /. : 8 _
; int celsiusTemperature = cTemperature.getTemperature();

b m_temperature = (int)(9.0 * celsiusTemperature / 5 + 32.5);
class Celsius { }
public: i . Usage
Celsius(int temperature) Fahrenheit room(75);
Celsius(Fahrenheit &fTemperature) Celsius zimmer(18);
int getTemperature() const; i Celsius cC_room(room);
pri‘\’/‘;'tg_d'Sp'ay() const, ! Fahrenheit f_zimmer(zimmer);
int m_temperature; ' room =zimmer;

2 1

Static Data Members

< Suppose we want to give each object of the Student class a unique ID

+ Using a global variable is one method
int gIDNumber = 0;
class Student {
public:
Student();
int getID() const;
private:
intm_id;
h
< The constructor
Student::Student():m_id(gIDNumber++) {

}
< Problems:
* |f other programs manipulate this global variable, the count would be incorrect

= It would be better if a name like gStudentiDNumber is used
13

Static Data Members (cont’d)

<+ Better solution with static data member
class Student {
public:
Student();
int getID() const;
private:
static int lastiIDNumber;
intm_id;
I
< A class declaration is not a variable, you must define the static
variable in the global scope

int Student::lastiDNumber = 0;
this can be put anywhere in the program, but it must be in the *.cpp
file and only occurs once

The constructor

Student::Student():m_id(lastiDNumber++) {
}
Also used for specific constant definition. Ex. Integer::INT_MAX

<>

<>

14

Static Member Functions

< A static function can only access static data member
class Student {
public:
Student();
int getlD() const;
private:
static int lastI DNumber;
int m_id;
static int getNewID();
static int incrementNewlID();

k
< The keyword static is not repeated in the function definition
int Student::getNewlID() { i int Student::incrementNewID() {

return lastiDNumber; return lastiIDNumber++;

} b
< The constructor might take this form

Student::Student():m_id(getNewID()) {
incrementNewID()

}

15

Static Member Functions (cont'd)

If the static member function is public, it can be accessed without
reference to a particular object, ex.

Integer::convertFromInt(10);
Static member function does not have the implicit this pointer
because it is not invoked with any object.
< Sometimes use static member functions to implement callback
functions that do not allow any implicit argument.

<>

<>

16

