
2/11/2014 2 A Survey of Programming Techniques

http://www.desy.de/gna/html/cc/Tutorial/node3.htm 1/10

Next: 3 Abstract Data Types Up: Introduction to Object-Oriented Programming Previous: 1 Introduction

Subsections

2.1 Unstructured Programming

2.2 Procedural Programming

2.3 Modular Programming

2.4 An Example with Data Structures
2.4.1 Handling Single Lists

2.4.2 Handling Multiple Lists
2.5 Modular Programming Problems

2.5.1 Explicit Creation and Destruction

2.5.2 Decoupled Data and Operations

2.5.3 Missing Type Safety

2.5.4 Strategies and Representation

2.6 Object-Oriented Programming

2.7 Exercises

2 A Survey of Programming Techniques

Peter Müller

Globewide Network Academy (GNA)

pmueller@uu-gna.mit.edu

This chapter is a short survey of programming techniques. We use a simple example to illustrate the particular

properties and to point out their main ideas and problems.

Roughly speaking, we can distinguish the following learning curve of someone who learns to program:

Unstructured programming,

procedural programming,

modular programming and

object-oriented programming.

This chapter is organized as follows. Sections 2.1 to 2.3 briefly describe the first three programming

techniques. Subsequently, we present a simple example of how modular programming can be used to

implement a singly linked list module (section 2.4). Using this we state a few problems with this kind of

technique in section 2.5. Finally, section 2.6 describes the fourth programming technique.

2.1 Unstructured Programming

 Usually, people start learning programming by writing small and simple programs consisting only of one main

program. Here ``main program'' stands for a sequence of commands or statements which modify data which

is global throughout the whole program. We can illustrate this as shown in Fig. 2.1.

http://www.desy.de/gna/html/cc/Tutorial/node4.html
http://www.desy.de/gna/html/cc/Tutorial/tutorial.html
http://www.desy.de/gna/html/cc/Tutorial/node2.html
http://www.desy.de/gna/html/cc/Tutorial/node4.html
http://www.desy.de/gna/html/cc/Tutorial/tutorial.html
http://www.desy.de/gna/html/cc/Tutorial/node2.html
mailto:pmueller@uu-gna.mit.edu

2/11/2014 2 A Survey of Programming Techniques

http://www.desy.de/gna/html/cc/Tutorial/node3.htm 2/10

Figure 2.1:
 Unstructured

programming. The

main program directly

operates on global

data.

As you should all know, this programming techniques provide tremendous disadvantages once the program

gets sufficiently large. For example, if the same statement sequence is needed at different locations within the
program, the sequence must be copied. This has lead to the idea to extract these sequences, name them and

offering a technique to call and return from these procedures.

2.2 Procedural Programming

 With procedural programming you are able to combine returning sequences of statements into one single
place. A procedure call is used to invoke the procedure. After the sequence is processed, flow of control

proceeds right after the position where the call was made (Fig. 2.2).

Figure 2.2: Execution

of procedures. After
processing flow of

controls proceed
where the call was

made.

With introducing parameters as well as procedures of procedures (subprocedures) programs can now be

written more structured and error free. For example, if a procedure is correct, every time it is used it

2/11/2014 2 A Survey of Programming Techniques

http://www.desy.de/gna/html/cc/Tutorial/node3.htm 3/10

produces correct results. Consequently, in cases of errors you can narrow your search to those places which
are not proven to be correct.

Now a program can be viewed as a sequence of procedure calls . The main program is responsible to pass

data to the individual calls, the data is processed by the procedures and, once the program has finished, the
resulting data is presented. Thus, the flow of data can be illustrated as a hierarchical graph, a tree, as shown

in Fig. 2.3 for a program with no subprocedures.

Figure 2.3: Procedural

programming. The main program
coordinates calls to procedures and

hands over appropriate data as

parameters.

To sum up: Now we have a single program which is devided into small pieces called procedures. To enable

usage of general procedures or groups of procedures also in other programs, they must be separately
available. For that reason, modular programming allows grouping of procedures into modules.

2.3 Modular Programming

 With modular programming procedures of a common functionality are grouped together into separate
modules. A program therefore no longer consists of only one single part. It is now devided into several

smaller parts which interact through procedure calls and which form the whole program (Fig. 2.4).

Figure 2.4: Modular programming. The main

program coordinates calls to procedures in separate
modules and hands over appropriate data as

parameters.

http://www.desy.de/gna/html/cc/Tutorial/footnode.html#90

2/11/2014 2 A Survey of Programming Techniques

http://www.desy.de/gna/html/cc/Tutorial/node3.htm 4/10

Each module can have its own data. This allows each module to manage an internal state which is modified

by calls to procedures of this module. However, there is only one state per module and each module exists at

most once in the whole program.

2.4 An Example with Data Structures

 Programs use data structures to store data. Several data structures exist, for example lists, trees, arrays,

sets, bags or queues to name a few. Each of these data structures can be characterized by their structure and

their access methods.

2.4.1 Handling Single Lists

 You all know singly linked lists which use a very simple structure, consisting of elements which are strung

together, as shown in Fig. 2.5).

Figure 2.5: Structure of a singly linked list.

Singly linked lists just provides access methods to append a new element to their end and to delete the

element at the front. Complex data structures might use already existing ones. For example a queue can be
structured like a singly linked list. However, queues provide access methods to put a data element at the end

and to get the first data element (first-in first-out (FIFO) behaviour).

We will now present an example which we use to present some design concepts. Since this example is just
used to illustrate these concepts and problems it is neither complete nor optimal. Refer to chapter 10 for a

complete object-oriented discussion about the design of data structures.

http://www.desy.de/gna/html/cc/Tutorial/node11.html#lecture9

2/11/2014 2 A Survey of Programming Techniques

http://www.desy.de/gna/html/cc/Tutorial/node3.htm 5/10

Suppose you want to program a list in a modular programming language such as C or Modula-2. As you
believe that lists are a common data structure, you decide to implement it in a separate module. Typically, this

requires you to write two files: the interface definition and the implementation file. Within this chapter we

will use a very simple pseudo code which you should understand immediately. Let's assume, that comments

are enclosed in ``/* ... */''. Our interface definition might then look similar to that below:

 /*
 * Interface definition for a module which implements
 * a singly linked list for storing data of any type.
 */

 MODULE Singly-Linked-List-1

 BOOL list_initialize();
 BOOL list_append(ANY data);
 BOOL list_delete();
 list_end();

 ANY list_getFirst();
 ANY list_getNext();
 BOOL list_isEmpty();

 END Singly-Linked-List-1

Interface definitions just describe what is available and not how it is made available. You hide the information

of the implementation in the implementation file. This is a fundamental principle in software engineering, so let's

repeat it: You hide information of the actual implementation (information hiding). This enables you to
change the implementation, for example to use a faster but more memory consuming algorithm for storing

elements without the need to change other modules of your program: The calls to provided procedures

remain the same.

The idea of this interface is as follows: Before using the list one has to call list_initialize() to initialize variables

local to the module. The following two procedures implement the mentioned access methods append and

delete. The append procedure needs a more detailed discussion. Function list_append() takes one argument
data of arbitrary type. This is necessary since you wish to use your list in several different environments,

hence, the type of the data elements to be stored in the list is not known beforehand. Consequently, you have

to use a special type ANY which allows to assign data of any type to it . The third procedure list_end()

needs to be called when the program terminates to enable the module to clean up its internally used variables.
For example you might want to release allocated memory.

With the next two procedures list_getFirst() and list_getNext() a simple mechanism to traverse through the

list is offered. Traversing can be done using the following loop:

 ANY data;

 data <- list_getFirst();
 WHILE data IS VALID DO
 doSomething(data);
 data <- list_getNext();
 END

Now you have a list module which allows you to use a list with any type of data elements. But what, if you

need more than one list in one of your programs?

http://www.desy.de/gna/html/cc/Tutorial/footnode.html#205

2/11/2014 2 A Survey of Programming Techniques

http://www.desy.de/gna/html/cc/Tutorial/node3.htm 6/10

2.4.2 Handling Multiple Lists

 You decide to redesign your list module to be able to manage more than one list. You therefore create a

new interface description which now includes a definition for a list handle. This handle is used in every

provided procedure to uniquely identify the list in question. Your interface definition file of your new list
module looks like this:

 /*
 * A list module for more than one list.
 */

 MODULE Singly-Linked-List-2

 DECLARE TYPE list_handle_t;

 list_handle_t list_create();
 list_destroy(list_handle_t this);
 BOOL list_append(list_handle_t this, ANY data);
 ANY list_getFirst(list_handle_t this);
 ANY list_getNext(list_handle_t this);
 BOOL list_isEmpty(list_handle_t this);

 END Singly-Linked-List-2;

You use DECLARE TYPE to introduce a new type list_handle_t which represents your list handle. We do

not specify, how this handle is actually represented or even implemented. You also hide the implementation

details of this type in your implementation file. Note the difference to the previous version where you just hide

functions or procedures, respectively. Now you also hide information for an user defined data type called

list_handle_t.

You use list_create() to obtain a handle to a new thus empty list. Every other procedure now contains the

special parameter this which just identifies the list in question. All procedures now operate on this handle

rather than a module global list.

Now you might say, that you can create list objects. Each such object can be uniquely identified by its handle

and only those methods are applicable which are defined to operate on this handle.

2.5 Modular Programming Problems

 The previous section shows, that you already program with some object-oriented concepts in mind.

However, the example implies some problems which we will outline now.

2.5.1 Explicit Creation and Destruction

In the example every time you want to use a list, you explicitly have to declare a handle and perform a call to

list_create() to obtain a valid one. After the use of the list you must explicitly call list_destroy() with the

handle of the list you want to be destroyed. If you want to use a list within a procedure, say, foo() you use the

following code frame:

 PROCEDURE foo() BEGIN
 list_handle_t myList;
 myList <- list_create();

2/11/2014 2 A Survey of Programming Techniques

http://www.desy.de/gna/html/cc/Tutorial/node3.htm 7/10

 /* Do something with myList */
 ...

 list_destroy(myList);
 END

Let's compare the list with other data types, for example an integer. Integers are declared within a particular

scope (for example within a procedure). Once you've defined them, you can use them. Once you leave the
scope (for example the procedure where the integer was defined) the integer is lost. It is automatically created

and destroyed. Some compilers even initialize newly created integers to a specific value, typically 0 (zero).

Where is the difference to list ``objects''? The lifetime of a list is also defined by its scope, hence, it must be

created once the scope is entered and destroyed once it is left. On creation time a list should be initialized to

be empty. Therefore we would like to be able to define a list similar to the definition of an integer. A code

frame for this would look like this:

 PROCEDURE foo() BEGIN
 list_handle_t myList; /* List is created and initialized */

 /* Do something with the myList */
 ...
 END /* myList is destroyed */

The advantage is, that now the compiler takes care of calling initialization and termination procedures as
appropriate. For example, this ensures that the list is correctly deleted, returning resources to the program.

2.5.2 Decoupled Data and Operations

Decoupling of data and operations leads usually to a structure based on the operations rather than the data:
Modules group common operations (such as those list_...() operations) together. You then use these

operations by providing explicitly the data to them on which they should operate. The resulting module

structure is therefore oriented on the operations rather than the actual data. One could say that the defined

operations specify the data to be used.

In object-orientation, structure is organized by the data. You choose the data representations which best fit

your requirements. Consequently, your programs get structured by the data rather than operations. Thus, it is

exactly the other way around: Data specifies valid operations. Now modules group data representations
together.

2.5.3 Missing Type Safety

 In our list example we have to use the special type ANY to allow the list to carry any data we like. This
implies, that the compiler cannot guarantee for type safety. Consider the following example which the

compiler cannot check for correctness:

 PROCEDURE foo() BEGIN
 SomeDataType data1;
 SomeOtherType data2;
 list_handle_t myList;

 myList <- list_create();
 list_append(myList, data1);

2/11/2014 2 A Survey of Programming Techniques

http://www.desy.de/gna/html/cc/Tutorial/node3.htm 8/10

 list_append(myList, data2); /* Oops */

 ...

 list_destroy(myList);
 END

It is in your responsibility to ensure that your list is used consistently. A possible solution is to additionally add

information about the type to each list element. However, this implies more overhead and does not prevent

you from knowing what you are doing.

What we would like to have is a mechanism which allows us to specify on which data type the list should be

defined. The overall function of the list is always the same, whether we store apples, numbers, cars or even

lists. Therefore it would be nice to declare a new list with something like:

 list_handle_t<Apple> list1; /* a list of apples */
 list_handle_t<Car> list2; /* a list of cars */

The corresponding list routines should then automatically return the correct data types. The compiler should
be able to check for type consistency.

2.5.4 Strategies and Representation

The list example implies operations to traverse through the list. Typically a cursor is used for that purpose

which points to the current element. This implies a traversing strategy which defines the order in which the
elements of the data structure are to be visited.

For a simple data structure like the singly linked list one can think of only one traversing strategy. Starting with

the leftmost element one successively visits the right neighbours until one reaches the last element. However,

more complex data structures such as trees can be traversed using different strategies. Even worse,

sometimes traversing strategies depend on the particular context in which a data structure is used.

Consequently, it makes sense to separate the actual representation or shape of the data structure from its
traversing strategy. We will investigate this in more detail in chapter 10.

What we have shown with the traversing strategy applies to other strategies as well. For example insertion

might be done such that an order over the elements is achieved or not.

2.6 Object-Oriented Programming

 Object-oriented programming solves some of the problems just mentioned. In contrast to the other

techniques, we now have a web of interacting objects, each house-keeping its own state (Fig. 2.6).

Figure 2.6: Object-oriented programming. Objects
of the program interact by sending messages to each

other.

http://www.desy.de/gna/html/cc/Tutorial/node11.html#lecture9

2/11/2014 2 A Survey of Programming Techniques

http://www.desy.de/gna/html/cc/Tutorial/node3.htm 9/10

Consider the multiple lists example again. The problem here with modular programming is, that you must

explicitly create and destroy your list handles. Then you use the procedures of the module to modify each of

your handles.

In contrast to that, in object-oriented programming we would have as many list objects as needed. Instead of
calling a procedure which we must provide with the correct list handle, we would directly send a message to

the list object in question. Roughly speaking, each object implements its own module allowing for example

many lists to coexist.

Each object is responsible to initialize and destroy itself correctly. Consequently, there is no longer the need

to explicitly call a creation or termination procedure.

You might ask: So what? Isn't this just a more fancier modular programming technique? You were
right, if this would be all about object-orientation. Fortunately, it is not. Beginning with the next chapters

additional features of object-orientation are introduced which makes object-oriented programming to a new

programming technique.

2.7 Exercises

1.

The list examples include the special type ANY to allow a list to carry data of any type. Suppose you

want to write a module for a specialized list of integers which provides type checking. All you have is

the interface definition of module Singly-Linked-List-2.

(a)
How does the interface definition for a module Integer-List look like?

(b)

Discuss the problems which are introduced with using type ANY for list elements in module

Singly-Linked-List-2.

(c)

What are possible solutions to these problems?

2/11/2014 2 A Survey of Programming Techniques

http://www.desy.de/gna/html/cc/Tutorial/node3.htm 10/10

2.

What are the main conceptual differences between object-oriented programming and the other

programming techniques?

3.

If you are familiar with a modular programming language try to implement module Singly-Linked-List-

2. Subsequently, implement a list of integers and a list of integer lists with help of this module.

Next: 3 Abstract Data Types Up: Introduction to Object-Oriented Programming Previous: 1 Introduction

P. Mueller

8/31/1997

http://www.desy.de/gna/html/cc/Tutorial/node4.html
http://www.desy.de/gna/html/cc/Tutorial/tutorial.html
http://www.desy.de/gna/html/cc/Tutorial/node2.html
http://www.desy.de/gna/html/cc/Tutorial/node4.html
http://www.desy.de/gna/html/cc/Tutorial/tutorial.html
http://www.desy.de/gna/html/cc/Tutorial/node2.html

