Cryptography 2nd Homework

1. Solve the following system of congruences:

$$
\begin{aligned}
& 13 x \equiv 4 \quad(\bmod 99) \\
& 15 x \equiv 56 \quad(\bmod 101)
\end{aligned}
$$

2. For $n=p q$, where p and q are distinct odd primes, define

$$
\lambda(n)=\frac{(p-1)(q-1)}{\operatorname{gcd}(p-1, q-1)} .
$$

Suppose that we modify the RSA Cryptosystem be requiring that ed $\equiv 1$ $(\bmod \lambda(n))$.
(a) Prove that encryption and decryption are still inverse operations in this modified cryptosystem.
(b) If $p=37, q=79$, and $e=7$, compute d in this modified cryptosystem, as well as in the original RSA Cryptosystem.

