Cryptography 1st Homework

- 3.13.20 Let a and n > 1 be integers with gcd(a, n) = 1. The order of $a \mod n$ is the smallest positive integer r such that $a^r = 1 \pmod{n}$. We denote $r = ord_n(a)$
 - a. Show that $r \leq \phi(n)$
 - b. Show that if m = rk is a multiple of r, then $a^m = 1 \pmod{n}$.
 - c. Suppose $a^t = 1 \pmod{n}$. Write t = qr + s with $0 \le s < r$. Show that $a^s = 1 \pmod{n}$.
 - d. Using definition of r and fact that $0 \le s < r$, show s = 0, and therefore r|t. This, combined with part (b), yields the result that $a^t = 1 \pmod{n}$ iff $ord_n(a)|t$.
 - e. Show that $ord_n(a)|\phi(n)$.