Cryptography 1st Homework

3.13.20 Let a and $n>1$ be integers with $\operatorname{gcd}(a, n)=1$. The order of $a \bmod n$ is the smallest positive integer r such that $a^{r}=1(\bmod n)$. We denote $r=\operatorname{ord}_{n}(a)$
a. Show that $r \leq \phi(n)$
b. Show that if $m=r k$ is a multiple of r, then $a^{m}=1(\bmod n)$.
c. Suppose $a^{t}=1(\bmod n)$. Write $t=q r+s$ with $0 \leq s<r$. Show that $a^{s}=1$ $(\bmod n)$.
d. Using definition of r and fact that $0 \leq s<r$, show $s=0$, and therefore $r \mid t$. This, combined with part (b), yields the result that $a^{t}=1(\bmod n)$ iff $\operatorname{ord}_{n}(a) \mid t$.
e. Show that $\operatorname{ord}_{n}(a) \mid \phi(n)$.

