## 密 碼 學 與 應 用 作 業

1．（Trappe $2^{\text {nd }}$ Ed．3．13．3）
（a）Find all solutions of $12 x \equiv 28(\bmod 236)$
（b）Find all solutions of $12 x \equiv 30(\bmod 236)$

2．（Trappe $2^{\text {nd }}$ Ed．3．13．6）
（a）Let $\mathrm{F}_{1}=1, \mathrm{~F}_{2}=1, \mathrm{~F}_{\mathrm{n}+1}=\mathrm{F}_{\mathrm{n}}+\mathrm{F}_{\mathrm{n}-1}$ define the Fibonacci numbers
$1,1,2,3,5,8, \ldots$ Use the Euclidean algorithm to compute $\operatorname{gcd}\left(\mathrm{F}_{\mathrm{n}}, \mathrm{F}_{\mathrm{n}-1}\right)$ for all $\mathrm{n} \geq 1$
（b）Find $\operatorname{gcd}(11111111,11111)$
（c）Let $\mathrm{a}=111 \ldots 11$ be formed with $\mathrm{F}_{\mathrm{n}}$ repeated 1＇s and let $\mathrm{b}=111 \ldots 11$ be formed with $\mathrm{F}_{\mathrm{n}-1}$ repeated 1＇s．Find $\operatorname{gcd}(\mathrm{a}, \mathrm{b})$ ．（Hint：Compare your computations in parts（a）and（b））

3．（Trappe $\left.2^{\text {nd }} E d .3 .13 .15\right)$
（a）Compute $\phi(\mathrm{d})$ for all of the divisors of 10 （namely， $1,2,5,10$ ），and find the sum of these $\phi(\mathrm{d})$ ．
（b）Repeat part（a）for all of the divisors of 12
（c）Let $\mathrm{n} \geq 1$ ．Conjecture the value of $\Sigma \phi(\mathrm{d})$ ，where the sum is over the divisors of n ．（This result is proved in many elementary number theory texts．）

4．（Trappe $2^{\text {nd }}$ Ed．3．13．19）Find all primes $p$ for which $\left(\begin{array}{ll}3 & 5 \\ 7 & 3\end{array}\right)(\bmod p)$ is not invertible．

5．（Trappe $\left.2^{\text {nd }} E d .3 .13 .22\right)$
We want to find an exponent k such that $3^{\mathrm{k}} \equiv 2(\bmod 65537)$
（a）Observe that $2^{32} \equiv 1(\bmod 65537)$ ，but $2^{16} \neq 1(\bmod 65537)$ ．It can be shown （Exercise 32）that 3 is a primitive root $\bmod 65537$ ，which implies that $3^{\mathrm{n}} \equiv 1$ $(\bmod 65537)$ if and only if $65536 \mid \mathrm{n}$ ．Use this to show that $2048 \mid \mathrm{k}$ but 4096 does not divide k．（Hint：Raise both sides of $3^{k} \equiv 2(\bmod 65537)$ to the 16 －th and to the 32 －nd powers．）
（b）Use the result of part（a）to conclude that there are only 16 possible choices for k that need to be considered．Use this information to determine k ． This problem shows that if $\mathrm{p}-1$ has a special structure，for example，a power
of 2, then this can be used to avoid exhaustive searches. Therefore, such primes are cryptographically weak. See Exercise 9 in Chapter 7 for reinterpretation of the present problem.
6. (Trappe $\left.2^{\text {nd }} E d .3 .13 .29\right)$

Use the Legendre symbol to determine which of the following congruences have solutions (each modulus is prime)
(a) $\mathrm{X}^{2} \equiv 123(\bmod 401)$
(b) $X^{2} \equiv 43(\bmod 179)$
(c) $\mathrm{X}^{2} \equiv 1093(\bmod 65537)$
7. (Trappe $\left.2^{\text {nd }} E d .3 .13 .40\right)$
(a) Give an example of integers $\mathrm{m} \neq \mathrm{n}$ with $\operatorname{gcd}(\mathrm{m}, \mathrm{n})>1$ and integers $\mathrm{a}, \mathrm{b}$ such that the simultaneous congruences

$$
\begin{aligned}
& x \equiv a(\bmod m) \\
& x \equiv b(\bmod n)
\end{aligned}
$$

have no solution.
(b) Give an example of integers $\mathrm{m} \neq \mathrm{n}$ with $\operatorname{gcd}(\mathrm{m}, \mathrm{n})>1$ and integers $\mathrm{a} \neq \mathrm{b}$ such that the simultaneous congruences

$$
\begin{aligned}
& x \equiv \mathrm{a}(\bmod \mathrm{~m}) \\
& \mathrm{x} \equiv \mathrm{~b}(\bmod \mathrm{n})
\end{aligned}
$$

have a solution

