2002 Fall 資訊安全導論課程內容摘要

  課程摘要 課本閱讀
第一週 (9/20) 課程簡介, 課程要求, Textbook, Cryptography terminology, Basic communication scenario, Types of attacks, attacks to the cryptography algorithms, Kerckhoffs's Principle, Security Services, Secret Key vs Public Key Cryptosystems, Key Length Issues, Slides , Lenstra's paper [1] , Blaze's paper [2] chap 1
第二週 (09/27) Unbreakable Cryptosystems, One-time pad, Modern Cryptography, Security Notions in Cryptography, 資訊安全的定義, 電腦安全的威脅, 資訊安全課題, Cryptographic Applications, Focus of this class, Why staying in this class? Aspects of Modern Cryptography, Slides , Congruence, GCD, Euclidean Algorithm, Extended Euclidean Algorithm, Multiplicative Inverse, Slides chap 1
chap 3
第三週 (10/04) Solving ax=b mod n, Group, Abelian Group, Cyclic Group, Ring, Field, apply modulo whenever you can, Fast exponentiation, CRT, Matlab samples, Slides chap 3
第四週 (10/11) CRT 2nd solution interpretation, square root example, Slides , Classical Ciphers - Shift Cipher, Affine Cipher, Substitution Cipher, Vigenere Cipher, Block Cipher, Hill Cipher, Shannon's Principles, Letter Frequency Analysis, Slides   chap 3
chap 2
第五週 (10/18) Stream Ciphers, Slides , Prime numbers (Basics, Prime Number Theorem, Factors, Fermat Little Theorem), Slides   chap 3
chap 2
第六週 (10/25) Prime numbers (Fermat Little Theorem, Euler Totient function, Euler Theorem, Primitive Root, Square Root), Slides , History, Feistel System, A simple DES, Slides chap 4
第七週 (11/01) Design of f(.,.), 3-round differential cryptanalysis, 4-round differential cryptanalysis, DES design criteria, DES, Linear Cryptanalysis, Is DES a group?, Modes of Operation (ECB, CBC, CFB, OFB, Counter), Slides   chap 4
第八週 (11/08) DES , AES chap 4
chap 5
第九週 (11/15) 期中考試 2:10-4:00 chap 1-5
第十週 (11/22) RSA Cryptosystem, slides chap 6
第十一週 (11/29) RSA Cryptosystem cont'd, slides
(請注意 11/29 期中退選截止)
chap 6
第十二週 (12/06) RSA cont'd and attacks, slides chap 6
第十三週 (12/13) RSA cont'd and attacks, slides chap 6
第十四週 (12/20) Discrete Log based Cryptosystem, Pohlig-Hellman method, slides chap 7
第十五週 (12/27) Diffie-Hellman Key Exchange Algorithm, ElGamal Cryptosystem, and DDH assumption, slides chap 7
第十六週 (01/03) Signature schemes, Hash, and Birthday attack, slides chap 8
第十七週 (01/10) Secret Sharing, slides chap 10
第十八週 (01/17) 學期考試 2:10-4:00 chap 6, chap 7, chap 8


Materials not covered in this semester: (Hopefully these will be covered in a follow-up course.)

1 Key exchange and Kerberos, slides chap 13
2 PKI (PKCS, X.509, PGP) chap 13
3 Information Theory chap 14
4 Elliptic Curve Cryptosystem chap 15
5 Quantum Cryptography chap 17
6 Error Correcting Code and Cryptography chap 16
7 Quadratic Residue, Composite Residuosity, and Pailier's Cryptosystem (Partial Discrete Log with trapdoor), slide1 (working)
8 Secret Sharing Without Trusted Center (ElGamal, RSA)
9 Bit Commitment Schemes
10 Zero Knowledge Protocol and Zero Knowledge Proof, slides chap 12
11 Applications in Electronic Commerce chap 9
12 Cryptographic Games chap 11
13 Oblivious Transfer and Oblivious Signature
14 Two party computation protocols, slides
15 Multi-party computation protocols
16 Electronic Auctions and some application of Game Theory
17 Electronic Voting
18 Cryptographic Hash Algorithms
19 OAEP
20 Group Signatures Undeniable Signature and Designated Confirmer Signature
21 Ring Signatures, slides
22 Subliminal Channel
23 SSL/TLS, PEM, S/MINE
24 Cryptographic Packages (RSAREF, BSAFE, OpenSSL, Crypto++, Java JCE, Cryptix, MS Crypto API, cryptlib)
25 Comparison of Public Key Cryptosystems, slides
26 Smartcards
27 Pseudo Random number generation, slides


Theoretical stuffs like one way function, hard-core predicate, pseudo random generators and pseudo random functions, zero knowledge proof systems, security notions in encryption (symmetric and asymmetric) and signature system, multi-party protocols, and modelling / analysis of security protocols are covered in a separate Graduate course.

資訊安全導論課程 首頁

製作日期: 09/16/2002 by 丁培毅 (Pei-yih Ting)
E-mail: pyting@cs.ntou.edu.tw TEL: 02 24622192x6615
海洋大學 理工學院 資訊科學系 Lagoon

0 height=100>