NTOUCS 1112 密碼學與應用作業三 繖交日期 112／03／23（四）15：10

1．Which of the following congruence relations have solutions．If yes，what are the solutions？
（a） $\mathrm{X}^{2} \equiv 153(\bmod 419)$ ？
（b） $\mathrm{X}^{2} \equiv 53(\bmod 191)$ ？
（c） $\mathrm{X}^{2} \equiv 52528(\bmod 80029)$
Note：419， 191 are primes， $80029=419 * 191$
Sol：
（a） $419 \equiv 3(\bmod 4)$
$153^{\frac{419-1}{2}} \equiv 153^{209} \equiv 153^{128+64+16+1} \equiv 252 \cdot 154 \cdot 352 \cdot 153 \equiv 418 \equiv-1(\bmod 419)$
$x^{2} \equiv 153(\bmod 419)$ has no solution．
（b） $191 \equiv 3(\bmod 4)$
$53^{\frac{191-1}{2}} \equiv 53^{95} \equiv 53^{64+16+8+4+2+1} \equiv 98 \cdot 50 \cdot 97 \cdot 80 \cdot 135 \cdot 53 \equiv 190 \equiv-1(\bmod 191)$
$x^{2} \equiv 53(\bmod 191)$ has no solution．
（c）This problem is equivalent to the system of congruence equations
$x^{2} \equiv 153(\bmod 419)$ and $x^{2} \equiv 3(\bmod 191)$ ．
From part（a），the first congruence has no solution，means that 153 or 52528 is not a quadratic residue modulo 419．Thus the congruence relation $x^{2} \equiv 52528(\bmod 80029)$ has no solution，i．e．not a quadratic residue modulo 80029，even though $3^{\frac{191-1}{2}} \equiv 3^{95} \equiv 3^{64+16+8+4+2+1} \equiv 12 \cdot 96 \cdot 67 \cdot 81 \cdot 9 \cdot 3 \equiv 1(\bmod$ 191）means that 3 or 52528 is a quadratic residue $\bmod 191$.

2．Find the last 3－digits of 1234^{5632}
Sol：
$1000=2^{3} \cdot 5^{3}$
$\phi(1000)=1000 \cdot(1-1 / 2) \cdot(1-1 / 5)=400$
We would really like to use the Euler＇s Theorem $\mathrm{a}^{\phi(\mathrm{n})} \equiv 1(\bmod \mathrm{n})$ to simplify the modulo exponentiation． However，the catch is that $\operatorname{gcd}(a, n)=1$ or $a \in Z_{n}^{*}$ must be satisfied and unfortunately $\operatorname{gcd}(1234,100)=2$ ．In this case we still can use Fermat＇s Little Theorem and Chinese Remainder Theorem to speed up the calculation of the modular exponentiation，which takes $\mathrm{O}\left((\log n)^{3}\right)$ of time and is large if $\log \mathrm{n}$ goes to several thousands． $1234^{5632}(\bmod 1000)$ is equivalent to the following system of congruence equations $x \equiv 1234^{5632}(\bmod 8) \equiv 1234^{5632}(\bmod 125) \quad$ where $\operatorname{gcd}(8,125)=1$
Now the first congruence relation becomes $x \equiv(1234 \bmod 8)^{5632} \equiv 2^{5632} \equiv 8 \cdot 2^{5629} \equiv 0(\bmod 8)$ and the second congruence relation becomes $x \equiv(1234 \bmod 125)^{(5632 \bmod 100)} \equiv 109^{32} \equiv 81(\bmod 125)$ ，where $\operatorname{gcd}(1234,125)=1$ and $\phi(125)=125 \cdot(1-1 / 5)=100$ ．
Now we use CRT to solve the following system of equations
$x \equiv 0(\bmod 8) \equiv 81(\bmod 125) \quad$ where $\operatorname{gcd}(8,125)=1$

Because we have $8 \cdot\left(8^{-1}\right)_{\bmod 125}+125 \cdot\left(125^{-1}\right)_{\bmod 8}=1$, i.e. $8 \cdot(-78)+125 \cdot 5=1$ and the CRT solution for the above system of congruence relations is
$x \equiv 81 \cdot 8 \cdot(-78)+0 \cdot 125 \cdot 5 \equiv 456(\bmod 1000)$
A last note, although if we neglect the fact that $\operatorname{gcd}(1234,1000)=2$ and apply Euler's Theorem anyway, $1234^{5632} \equiv 234^{5632(\bmod 400)} \equiv 234^{32} \equiv\left(\left(\left(\left(\left(234^{2}\right)^{2}\right)^{2}\right)^{2}\right)^{2}\right) \equiv 456(\bmod 1000)$. This happens by chance or maybe some extra conditions are satisfied and is not guaranteed.
3. Find all primes p for which the matrix $\left[\begin{array}{ll}3 & 6 \\ 5 & 3\end{array}\right](\bmod p)$ is not invertible.

Sol:
If $\operatorname{gcd}(\operatorname{det}(\mathrm{A}), p)>1$ then a matrix A is not invertible modulo p.
$\operatorname{det}\left(\left[\begin{array}{ll}3 & 6 \\ 5 & 3\end{array}\right]\right)=3 \times 3-5 \times 6=-21 \equiv p-21(\bmod p)$
If p is greater than 21 then $\operatorname{gcd}(p-21, p)=1$ since p is a prime number. Thus, A is always invertible modulo p. Now we need to consider all primes less than 21 , i.e. $\{2,3,5,7,11,13,17,19\}$, one by one to see if any one satisfies $\operatorname{gcd}(p-21, p)>1$. Since p is a prime number, only its multiples are not relative prime to itself, which implies that $p-21 \equiv 0(\bmod p)$, or equivalently prime p that divides 21
(1) $\mathrm{p}=19 \Rightarrow 19-21 \equiv-2 \equiv 17(\bmod 19)$
(2) $\mathrm{p}=17 \Rightarrow 17-21 \equiv-4 \equiv 13(\bmod 17)$
(3) $\mathrm{p}=13 \Rightarrow 13-21 \equiv-8 \equiv 5(\bmod 13)$
(4) $\mathrm{p}=11 \Rightarrow 11-21 \equiv-10 \equiv 1(\bmod 11)$
(5) $\mathrm{p}=7 \Rightarrow 7-21 \equiv-14 \equiv 0(\bmod 7)$
(6) $\mathrm{p}=5 \Rightarrow 5-21 \equiv-16 \equiv 4(\bmod 5)$
(7) $\mathrm{p}=3 \Rightarrow 3-21 \equiv-18 \equiv 0(\bmod 3)$
(8) $\mathrm{p}=2 \Rightarrow 2-21 \equiv-19 \equiv 1(\bmod 2)$

Hence, the only prime numbers that make the matrix $\left[\begin{array}{ll}3 & 6 \\ 5 & 3\end{array}\right](\bmod p)$ not invertible are 3 and 7 .
4. Let a and $n>1$ be integers with $\operatorname{gcd}(a, n)=1$. The order of $a \bmod n$ is the smallest positive integer r such that $a^{r} \equiv 1(\bmod n)$. Denote $r=\operatorname{ord}_{n}(a)$.
(a) Show that $r \leq \phi(n)$
(b) Show that if $m=r k$ is a multiple of r, then $a^{m} \equiv 1(\bmod n)$
(c) Suppose $a^{t} \equiv 1(\bmod n)$. Write $t=q r+s$ with $0 \leq s<r($ this is just division with remainder). Show that $a^{s} \equiv 1(\bmod n)$.
(d) Using the definition of r and the fact that $0 \leq s<r$, show that $s=0$ and therefore $r \mid t$. This, combined with part (b), yields the result that $a^{t} \equiv 1(\bmod n)$ if and only iford ${ }_{n}(a) \mid t$.
(e) Show thatord ${ }_{n}(a) \mid \phi(n)$.

Sol.
(a) Since r is the smallest positive integer such that $a^{r} \equiv 1(\bmod n)$ and Euler theorem says that the integer $\phi(n)$ satistfies $a^{\phi(n)} \equiv 1(\bmod n)$ for all $a \in Z_{n}^{*}$, we obtain that $r \leq \phi(n)$.
(b) Since $a^{r} \equiv 1(\bmod n), a^{m} \equiv a^{r k} \equiv\left(a^{r}\right)^{k} \equiv 1^{k} \equiv 1(\bmod n)$.
(c) Since $a^{t} \equiv a^{q r+s} \equiv a^{q r} \cdot a^{s} \equiv 1 \cdot a^{s} \equiv a^{s}(\bmod n), a^{t} \equiv 1(\bmod n)$ implies $a^{s} \equiv 1(\bmod n)$.
(d) We want to prove that " $a^{t} \equiv 1(\bmod n) \Leftrightarrow \operatorname{ord}_{n}(a) \mid t$ "
(\Rightarrow) : part (c) shows that if $t=q r+s, 0 \leq s<r$ then $a^{t} \equiv 1(\bmod n) \Rightarrow a^{s} \equiv 1(\bmod n)$. Since by definition r is the smallest number such that $a^{r} \equiv 1(\bmod n)$, we must have $s=0$ and $t=q r+0=q r$ and therefore $r \mid t$.
(\Leftarrow) : part (b) shows exactly that if $r \mid t$ then $a^{t} \equiv 1(\bmod n)$.
(e) Assume $\phi(n)=q r+s$. From the Euler theorem $a^{\phi(n)} \equiv 1(\bmod n)$ and the result of part (d), we concludes that $s=0$ and thus $\operatorname{ord}_{n}(a) \mid \phi(n)$.

