NTOUCS 1112 密碼學與應用作業三 繳交日期 112/03/23(四) 15:10

1. Which of the following congruence relations have solutions. If yes, what are the solutions?

(a) $X^2 \equiv 153 \pmod{419}$? (b) $X^2 \equiv 53 \pmod{191}$? (c) $X^2 \equiv 52528 \pmod{80029}$ Note: 419, 191 are primes, $80029 = 419 \times 191$ Sol: (a) $419 \equiv 3 \pmod{4}$ $153^{\frac{419-1}{2}} \equiv 153^{209} \equiv 153^{128+64+16+1} \equiv 252 \cdot 154 \cdot 352 \cdot 153 \equiv 418 \equiv -1 \pmod{419}$ $x^2 \equiv 153 \pmod{419}$ has no solution. (b) $191 \equiv 3 \pmod{41}$ $53^{\frac{191-1}{2}} \equiv 53^{95} \equiv 53^{64+16+8+4+2+1} \equiv 98 \cdot 50 \cdot 97 \cdot 80 \cdot 135 \cdot 53 \equiv 190 \equiv -1 \pmod{191}$ $x^2 \equiv 53 \pmod{191}$ has no solution.

(c) This problem is equivalent to the system of congruence equations

 $x^2 \equiv 153 \pmod{419}$ and $x^2 \equiv 3 \pmod{191}$.

From part (a), the first congruence has no solution, means that 153 or 52528 is not a quadratic residue modulo 419. Thus the congruence relation $x^2 \equiv 52528 \pmod{80029}$ has no solution, i.e. not a quadratic residue modulo 80029, even though $3^{\frac{191-1}{2}} \equiv 3^{95} \equiv 3^{64+16+8+4+2+1} \equiv 12 \cdot 96 \cdot 67 \cdot 81 \cdot 9 \cdot 3 \equiv 1 \pmod{191}$ means that 3 or 52528 is a quadratic residue mod 191.

2. Find the last 3-digits of 1234^{5632}

Sol:

 $1000 = 2^3 \cdot 5^3$

 $\phi(1000) = 1000 \cdot (1-1/2) \cdot (1-1/5) = 400$

We would really like to use the Euler's Theorem $a^{\phi(n)} \equiv 1 \pmod{n}$ to simplify the modulo exponentiation. However, the catch is that gcd(a, n)=1 or $a \in \mathbb{Z}_n^*$ must be satisfied and unfortunately gcd(1234,100)=2. In this case we still can use Fermat's Little Theorem and Chinese Remainder Theorem to speed up the calculation of the modular exponentiation, which takes $O((\log n)^3)$ of time and is large if log n goes to several thousands. $1234^{5632} \pmod{1000}$ is equivalent to the following system of congruence equations $x \equiv 1234^{5632} \pmod{8} \equiv 1234^{5632} \pmod{125}$ where gcd(8,125)=1

Now the first congruence relation becomes $x \equiv (1234 \mod 8)^{5632} \equiv 2^{5632} \equiv 8 \cdot 2^{5629} \equiv 0 \pmod{8}$ and the second congruence relation becomes $x \equiv (1234 \mod 125)^{(5632 \mod 100)} \equiv 109^{32} \equiv 81 \pmod{125}$, where gcd(1234, 125)=1 and $\phi(125)=125 \cdot (1-1/5)=100$.

Now we use CRT to solve the following system of equations

 $x \equiv 0 \pmod{8} \equiv 81 \pmod{125}$ where gcd(8,125)=1

Because we have $8 \cdot (8^{-1})_{\text{mod } 125} + 125 \cdot (125^{-1})_{\text{mod } 8} = 1$, i.e. $8 \cdot (-78) + 125 \cdot 5 = 1$ and the CRT solution for the above system of congruence relations is

$$x \equiv 81 \cdot 8 \cdot (-78) + 0 \cdot 125 \cdot 5 \equiv 456 \pmod{1000}$$

A last note, although if we neglect the fact that gcd(1234, 1000)=2 and apply Euler's Theorem anyway, $1234^{5632} \equiv 234^{5632 \pmod{400}} \equiv 234^{32} \equiv (((((234^2)^2)^2)^2)^2) \equiv 456 \pmod{1000}$. This happens by chance or maybe some extra conditions are satisfied and is not guaranteed.

3. Find all primes *p* for which the matrix $\begin{bmatrix} 3 & 6 \\ 5 & 3 \end{bmatrix} \pmod{p}$ is not invertible.

Sol:

If gcd(det(A),p) > 1 then a matrix A is not invertible modulo p. $det\begin{pmatrix} 3 & 6 \\ 5 & 3 \end{pmatrix} = 3 \times 3 - 5 \times 6 = -21 \equiv p - 21 \pmod{p}$

If *p* is greater than 21 then gcd(p-21, p) = 1 since *p* is a prime number. Thus, A is always invertible modulo *p*. Now we need to consider all primes less than 21, i.e. {2,3,5,7,11,13,17,19}, one by one to see if any one satisfies gcd(p-21,p)>1. Since *p* is a prime number, only its multiples are not relative prime to itself, which implies that $p-21\equiv 0 \pmod{p}$, or equivalently prime *p* that divides 21

(1) $p=19 \implies 19-21 \equiv -2 \equiv 17 \pmod{19}$

- (2) $p=17 \Rightarrow 17-21 \equiv -4 \equiv 13 \pmod{17}$ (3) $p=13 \Rightarrow 13-21 \equiv -8 \equiv 5 \pmod{13}$
- (4) $p=11 \implies 11-21 \equiv -10 \equiv 1 \pmod{13}$
- (1) $p = 7 \implies 7-21 \equiv -14 \equiv 0 \pmod{7}$
- (6) $p=5 \implies 5-21 \equiv -16 \equiv 4 \pmod{5}$
- (7) $p=3 \Rightarrow 3-21 \equiv -18 \equiv 0 \pmod{3}$

(8)
$$p=2 \Rightarrow 2-21 \equiv -19 \equiv 1 \pmod{2}$$

Hence, the only prime numbers that make the matrix $\begin{bmatrix} 3 & 6 \\ 5 & 3 \end{bmatrix}$ (mod p) not invertible are 3 and 7.

4. Let a and n > 1 be integers with gcd(a, n) = 1. The order of a mod n is the smallest positive integer r such

that $a^r \equiv 1 \pmod{n}$. Denote $r = ord_n(a)$.

- (a) Show that $r \leq \phi(n)$
- (b) Show that if m = r k is a multiple of r, then $a^m \equiv 1 \pmod{n}$
- (c) Suppose $a^t \equiv 1 \pmod{n}$. Write t = q r + s with $0 \le s < r$ (this is just division with remainder). Show that $a^s \equiv 1 \pmod{n}$.
- (d) Using the definition of *r* and the fact that $0 \le s < r$, show that s = 0 and therefore $r \mid t$. This, combined with part (b), yields the result that $a^t \equiv 1 \pmod{n}$ if and only if $ord_n(a) \mid t$.
- (e) Show that $ord_n(a) | \phi(n)$.

Sol.

- (a) Since *r* is the smallest positive integer such that $a^r \equiv 1 \pmod{n}$ and Euler theorem says that the integer $\phi(n)$ satisfies $a^{\phi(n)} \equiv 1 \pmod{n}$ for all $a \in \mathbb{Z}_n^*$, we obtain that $r \leq \phi(n)$.
- (b) Since $a^r \equiv 1 \pmod{n}$, $a^m \equiv a^{rk} \equiv (a^r)^k \equiv 1^k \equiv 1 \pmod{n}$.
- (c) Since $a^t \equiv a^{qr+s} \equiv a^{qr} \cdot a^s \equiv 1 \cdot a^s \equiv a^s \pmod{n}$, $a^t \equiv 1 \pmod{n}$ implies $a^s \equiv 1 \pmod{n}$.
- (d) We want to prove that " $a^t \equiv 1 \pmod{n} \Leftrightarrow ord_n(a) \mid t$ "

(\Rightarrow): part (c) shows that if t = qr + s, $0 \le s < r$ then $a^t \equiv 1 \pmod{n} \Rightarrow a^s \equiv 1 \pmod{n}$. Since by definition *r* is the smallest number such that $a^r \equiv 1 \pmod{n}$, we must have $s \equiv 0$ and $t \equiv qr + 0 \equiv qr$ and therefore $r \mid t$.

(\Leftarrow): part (b) shows exactly that if $r \mid t$ then $a^t \equiv 1 \pmod{n}$.

(e) Assume $\phi(n) = qr + s$. From the Euler theorem $a^{\phi(n)} \equiv 1 \pmod{n}$ and the result of part (d), we concludes that s = 0 and thus $ord_n(a) \mid \phi(n)$.