作業——參考解答 繳交日期 112／03／16（四）15：10 請上傳 tronclass

1．（a）Find $12^{-1}(\bmod 1729)$（b）Calculate by hand the solution of equation $12 \mathrm{x} \equiv 1124(\bmod 1729)$ ． （Please write out the process of calculation．）

Sol：

（a） $1729=144 \cdot 12+1$
$1=1729 \cdot 1+12 \cdot(-144)$
$12^{-1} \equiv-144(\bmod 1729) \equiv 1585(\bmod 1729)$
（b） $\operatorname{gcd}(12,1729)=1$
$12^{-1} \cdot 12 \mathrm{x} \equiv 12^{-1} \cdot 1124(\bmod 1729)$
$\mathrm{x} \equiv 1585 \cdot 1124(\bmod 1729) \equiv 670(\bmod 1729)$

2．The Fibonacci numbers are defined by $F_{0}=0, F_{1}=1, F_{n}=F_{n-1}+F_{n-2}$ ．（a）Show that if the quotients q_{i} （let $a \geq b, a=q_{0} b+r_{0}, b=q_{1} r_{0}+r_{1}, r_{0}=q_{2} r_{1}+r_{2}, \ldots$ ）appearing in the Euclidean algorithm for finding out $\operatorname{gcd}(a, b)$ are equal to one then a and b are consecutive Fibonacci numbers，（b）Show that the complexity of the Euclidean algorithm for finding $\operatorname{gcd}(\mathrm{a}, \mathrm{b}), \mathrm{a} \geq \mathrm{b}$ ，is $\mathrm{O}\left(\log _{10} \mathrm{~b}\right)$ integer divisions．（Asymptotically， integer division has the same complexity as integer multiplication，i．e． $\mathrm{O}\left(\log ^{2} \mathrm{n}\right)$ ．Thus，the complexity of Euclidean algorithm is close to an exponentiation．）

Sol：

（a）Assume that for a pair（ a, b ），the Euclidean algorithm performs that following integer divisions and finds that all quotients are $1, \mathrm{r}_{\mathrm{n}-3}=2$ ，and $\operatorname{gcd}(\mathrm{a}, \mathrm{b})=1$

$$
\begin{aligned}
& \mathrm{a}=1 \cdot \mathrm{~b}+\mathrm{r}_{0} \\
& \mathrm{~b}=1 \cdot \mathrm{r}_{0}+\mathrm{r}_{1} \\
& \mathrm{r}_{0}=1 \cdot \mathrm{r}_{1}+\mathrm{r}_{2} \\
& \mathrm{r}_{1}=1 \cdot \mathrm{r}_{2}+\mathrm{r}_{3} \\
& \ldots \\
& \mathrm{r}_{\mathrm{n}-4}=1 \cdot \mathrm{r}_{\mathrm{n}-3}+1
\end{aligned}
$$

Then $F_{2}=1, F_{3}=r_{n-3}=2, F_{4}=r_{n-4}, \ldots, F_{n}=r_{0}, F_{n+1}=b, F_{n+2}=a$ are the Fibonacci numbers．For example，$(\mathrm{a}, \mathrm{b})=\left(\mathrm{F}_{8}, \mathrm{~F}_{7}\right)=(21,13)$ ．
（b）The Euclidean algorithm performs worst（in terms of number of steps）for those bad pairs（ a, b ）which lead to all $\mathrm{q}_{\mathrm{i}}=1$ in the execution of the algorithm．Assume that the Euclidean algorithm terminates in N steps for a bad pair (a, b) ：for example $N=5$ ，we have the following
$\mathrm{a}=\mathrm{b}+\mathrm{r}_{0}$
$\mathrm{b}=\mathrm{r}_{0}+\mathrm{r}_{1}$
$\mathrm{r}_{0}=\mathrm{r}_{1}+\mathrm{r}_{2}$
$\mathrm{r}_{1}=\mathrm{r}_{2}+\mathrm{r}_{3}$
$\mathrm{r}_{2}=\mathrm{r}_{3}+1$
we then have the Fibonacci sequence $F_{2}=1, F_{3}=r_{3}=2, F_{4}=r_{2}, \ldots, F_{6}=b, F_{7}=a$ ．In general we have
$\mathrm{b}=\mathrm{F}_{\mathrm{N}+1}$ for a bad pair (a, b). Before we estimate the complexity of the algorithm, we need to have the following lemma
Lemma: If the Euclidean algorithm requires N steps for a pair $(a, b), a \geq b$, then a and b must satisfy $\mathrm{a} \geq \mathrm{F}_{\mathrm{N}+2}$ and $\mathrm{b} \geq \mathrm{F}_{\mathrm{N}+1}$.
This can be proved by induction.
For $\mathrm{N}=1, \mathrm{a}=\mathrm{q}_{0} \mathrm{~b}+0, \mathrm{~b}$ divides a with no remainder, the smallest natural numbers for this is $\mathrm{b}=1$ and $a=2$, which are F_{2} and F_{3} respectively.
Assume that the result holds for all values of N up to M -1.
Consider $\mathrm{N}=\mathrm{M}$, the first step of the M -step algorithm is $\mathrm{a}=\mathrm{q}_{0} \mathrm{~b}+\mathrm{r}_{0}$, and the Euclidean algorithm requires $\mathrm{M}-1$ additional steps for the pair $\left(b, r_{0}\right)$ where $b>r_{0}$. By induction hypothesis, $b \geq F_{M+1}$ and $r_{0} \geq F_{M}$. Therefore, $a=q_{0} b+r_{0} \geq b+r_{0} \geq F_{M+1}+F_{M}=F_{M+2}$, which is the desired inequality

If the algorithm requires N steps, then b is greater than or equal to F_{N+1} which in turn is greater than or equal to $\varphi^{\mathrm{N}-1}$, where φ is the golden ratio $\left(\varphi=\frac{1+\sqrt{5}}{2}=1.618033988749 \ldots\right.$. . Since $\mathrm{b} \geq \varphi^{\mathrm{N}-1}$, then $\mathrm{N}-1 \leq \log _{\varphi} \mathrm{b}$. Since $\log _{10} \varphi>1 / 5,(\mathrm{~N}-1) / 5<\log _{10} \varphi \log _{\varphi} \mathrm{b}=\log _{10} \mathrm{~b}$. Thus, $\mathrm{N} \leq 5 \log _{10} \mathrm{~b}$ and the complexity is $\mathrm{O}\left(\log _{10} \mathrm{~b}\right)$ integer divisions.
3. Solve by hand the x 's that satisfy the following system of congruence equations: (Please write out the process of calculation.)

$$
\left\{\begin{array}{l}
7 x \equiv 4(\bmod 93) \\
15 x \equiv 24(\bmod 39)
\end{array}\right.
$$

Sol:

Step 1. Solve x that satisfies $7 \cdot \mathrm{x} \equiv 4(\bmod 93)$

1. $\operatorname{gcd}(7,93)=1$ implies that these is only one x that satisfies $7 \cdot x \equiv 4(\bmod 93)$
2. Find $7^{-1}(\bmod 93)$ (formally by extended Euclidean algorithm)

$$
\begin{aligned}
& \text { or }(\operatorname{manually}) 93 \equiv \mathbf{2}(\bmod 7), \mathbf{2}^{-1} \equiv 4(\bmod 7), 1=7 \cdot \mathrm{~s}+93 \cdot 4, \mathrm{~s}=(1-93) / 7=-53, \text { i.e. } \\
& 7^{-1} \equiv 40(\bmod 93)
\end{aligned}
$$

3. $40 \cdot 7 \cdot x \equiv 40 \cdot 4(\bmod 93)$, i.e. the first congruence becomes $x \equiv 40 \cdot 4 \equiv 67(\bmod 93) \ldots$

Step 2. Solve x 's that satisfy $15 \cdot x \equiv 24(\bmod 39)$

1. $\operatorname{gcd}(15,39)=3$ and $3 \mid 24$ imply that there are $3 x$'s that satisfy $15 \cdot x \equiv 24(\bmod 39)$
2. divide both sides by 3 and get the congruence equation $5 \cdot x \equiv 8(\bmod 13)$
3. $\operatorname{gcd}(5,13)=1$ implies that only one x satisfies $5 \cdot x \equiv 8(\bmod 13)$
4. Find $5^{-1}(\bmod 13)$ by enumerating $2,3, \ldots, 12$, and find that $5^{-1} \equiv 8(\bmod 13)$
5. The solution to $5 \cdot \mathrm{x} \equiv 8(\bmod 13)$ is $\mathrm{x} \equiv 5^{-1} \cdot 8 \equiv 8 \cdot 8 \equiv 64 \equiv \mathbf{1 2}(\bmod 13)$

12 is also a solution to $15 \cdot x \equiv 24(\bmod 39)$
6. The other two solutions to $15 \cdot x \equiv 24(\bmod 39)$ are $12+13=\mathbf{2 5}, 12+13 \cdot 2=\mathbf{3 8}$
7. Now the second congruence relation becomes $x \equiv 12$ or 25 or $38(\bmod 39) \ldots$ (2)

8 . Since $x \equiv 67(\bmod 93) \Leftrightarrow 67 \equiv 1(\bmod 3)$ and $67 \equiv 5(\bmod 31)$ by CRT, we check $12 \equiv 0(\bmod 3), 25 \equiv 1(\bmod 3), 38 \equiv 2(\bmod 3)$, Thus, the only one x that satisfy equations $\mathbf{(1)}$ and 2 is 25 and the congruence relations are equivalent to

$$
\left\{\begin{array}{l}
x \equiv 67(\bmod 93) \\
x \equiv 25(\bmod 39)
\end{array}\right.
$$

Step 3. Use CRT to solve the following system of congruence equations
Sinc $\mathscr{g c d}(93,39)=3$, we need to decompose the above equations as $x \equiv 4(\bmod 3) \equiv 12(\bmod 13) \equiv 5(\bmod 31)$
$\mathrm{m}=3 \cdot 13 \cdot 31=1209$
$\mathrm{m}_{1}=3, \quad \mathrm{~m}_{2}=13, \quad \mathrm{~m}_{3}=31$
$\mathrm{r}_{1}=1, \quad \mathrm{r}_{2}=12, \quad \mathrm{r}_{3}=5$
$\mathrm{z}_{1}=403, \quad \mathrm{z}_{2}=93, \quad \mathrm{z}_{3}=39$
$\mathrm{s}_{1} \equiv 403^{-1} \equiv 1(\bmod 3), \quad \mathrm{s}_{2} \equiv 93^{-1} \equiv 7(\bmod 13), \quad \mathrm{s}_{3} \equiv 39^{-1} \equiv 4(\bmod 31)$
$\mathrm{x}=\mathrm{z}_{1} \cdot \mathrm{~s}_{1} \cdot \mathrm{r}_{1}+\mathrm{z}_{2} \cdot \mathrm{~s}_{2} \cdot \mathrm{r}_{2}+\mathrm{Z}_{3} \cdot \mathrm{~s}_{3} \cdot \mathrm{r}_{3}(\bmod \mathrm{~m})$
$=403 \cdot 1 \cdot 1+93 \cdot 7 \cdot 12+39 \cdot 4 \cdot 5(\bmod 1209)$
$=532(\bmod 1209)$
You can also solve the above system of 3 congruence relations progressively, i.e. first solve

$$
x \equiv 1(\bmod 3) \equiv 5(\bmod 31)
$$

which lead to the equivalent congruence relation $x \equiv 67(\bmod 93)$ and add the remaining congruence

$$
x \equiv 67(\bmod 93) \equiv 12(\bmod 13)
$$

find s and t satisfying $93 \mathrm{~s}+13 \mathrm{t}=1$,
s is $93^{-1}(\bmod 13) \equiv 2^{-1}(\bmod 13)$, enumerating $1,2, \ldots, 12$ and get 7
i.e. $93 \cdot 7+13 t=1$, therefore $t=(1-93 \cdot 7) / 13=-50$
$\mathrm{x}=12 \cdot 93 \cdot 7+67 \cdot 13 \cdot(-50)=-35738 \equiv 532(\bmod 1209)$

