NTOUCS 1112 密碼學與應用作業三 繳交日期 112／03／23（四）15：10

1．Which of the following congruences have solutions．If yes，what are the solutions？
（a） $\mathrm{X}^{2} \equiv 153(\bmod 419)$ ？
（b） $\mathrm{X}^{2} \equiv 53(\bmod 191)$ ？
（c） $\mathrm{X}^{2} \equiv 52528(\bmod 80029)$
Note：419，191， 65537 are primes， $80029=419 * 191$

2．Find the last 3 －digits of 1234^{5632}

3．Find all primes p for which the matrix $\left[\begin{array}{ll}3 & 6 \\ 5 & 3\end{array}\right](\bmod p)$ is not invertible．

4．Let a and $n>1$ be integers with $\operatorname{gcd}(a, n)=1$ ．The order of $a \bmod n$ is the smallest positive integer r such that $a^{r} \equiv 1(\bmod n)$ ．Denote $r=\operatorname{ord}_{n}(a)$ ．
（a）Show that $r \leq \phi(n)$
（b）Show that if $m=r k$ is a multiple of r ，then $a^{m} \equiv 1(\bmod n)$
（c）Suppose $a^{t} \equiv 1(\bmod n)$ ．Write $t=q r+s$ with $0 \leq s<r($ this is just division with remainder）．Show that $a^{s} \equiv 1(\bmod n)$ ．
（d）Using the definition of r and the fact that $0 \leq s<r$ ，show that $s=0$ and therefore $r \mid t$ ．This，combined with part (b) ，yields the result that $a^{t} \equiv 1(\bmod n)$ if and only iford ${ }_{n}(a) \mid t$.
（e）Show thatord ${ }_{n}(a) \mid \phi(n)$ ．

