1．（a）Calculate by hand $12^{-1}(\bmod 1729)(b)$ Calculate by hand the solution of equation $12 \mathrm{x} \equiv 1124(\bmod$ 1729）．（Please write out the process of calculation．）

2．The Fibonacci numbers are defined by $F_{0}=0, F_{1}=1, F_{n}=F_{n-1}+F_{n-2}$ ．（a）Show that if the quotients q_{i} （let $a \geq b, a=q_{0} b+r_{0}, b=q_{1} r_{0}+r_{1}, r_{0}=q_{2} r_{1}+r_{2}, \ldots$ ）appearing in the Euclidean algorithm for finding out $\operatorname{gcd}(a, b)$ are all equal to one then a and b are consecutive Fibonacci numbers，（b）Show that the worst case complexity of the Euclidean algorithm for finding $\operatorname{gcd}(a, b), a \geq b$ ，is $\mathrm{O}\left(\log _{10} b\right)$ integer divisions． （Asymptotically，integer division has the same complexity as integer multiplication，i．e． $\mathrm{O}\left(\log ^{2} \mathrm{n}\right)$ ．Thus， the complexity of Euclidean algorithm is close to an exponentiation．）

3．Solve by hand the x＇s that satisfy the following system of congruence equations：（Please write out the process of calculation．）

$$
\left\{\begin{array}{l}
7 x \equiv 4(\bmod 93) \\
15 x \equiv 24(\bmod 39)
\end{array}\right.
$$

