Discrete Log Based Cryptosystems

密碼學與應用
海洋大學資訊工程系
丁培毅

Discrete Log Problem

\diamond Given a prime number $p, \alpha \in \mathrm{Z}_{\mathrm{p}}^{*}, \beta \equiv \alpha^{x}(\bmod p)$ 'finding x ' is called the discrete logarithm problem
\diamond Not every discrete log problem has solution and not every discrete log problem is hard
\diamond if n is the smallest positive integer such that $\alpha^{n} \equiv 1$ $(\bmod p)\left(\right.$ i.e. $\left.n=\operatorname{ord}_{p}(\alpha)\right)$ we may assume $0 \leq x<n$, and then denote

$$
x=L_{\alpha}(\beta)
$$

x is the discrete \log of β with respect to α
$\diamond e x . p=11, \alpha=2,2^{6} \equiv 9(\bmod 11), L_{2}(9)=6$

Discrete Log Problem

\diamond Often α is a primitive root modulo p, which means that every β in $\mathrm{Z}_{\mathrm{p}}{ }^{*}$ is a power of $\alpha(\bmod \mathrm{p})$.
\diamond If α is not a primitive root, then the discrete \log will not be defined (i.e. no solution) for certain values of β in $Z_{p}{ }^{*}$.
\diamond If α is a primitive root modulo p, then

$$
L_{\alpha}\left(\beta_{1} \beta_{2}\right) \equiv L_{\alpha}\left(\beta_{1}\right)+L_{\alpha}\left(\beta_{2}\right)(\bmod \mathbf{p}-1)
$$

\diamond When p is small, it is easy to compute discrete logs by exhaustive search through all possible exponents
\diamond When p is large and satisfying a certain properties, solving a discrete logarithm problem is "believed to be hard"
\diamond The bit length of the largest prime number for which discrete logarithm can be computed is approximately the same size of the largest integer that can be factored. (2001: 110-digit (370-bit) prime numbers for discrete logs, 155-digit (512-bit) integers for factoring)

One-Way Function

$\triangleleft \mathrm{f}(x)$ is a one-way function if

* given $x, \mathrm{f}(x)$ is easy to compute
* given y, it is "computationally infeasible" to find x s.t. $\mathrm{f}(x)=y$
$\diamond \mathrm{f}(x)$ is a trapdoor one-way function if
* it is a one-way function
* given the trapdoor t and y, it is easy to find x s.t. $\mathrm{f}(x)=y$
\diamond candidates:
* modular exponentiation (one-way)
* multiplication of large primes (one-way)
* RSA function (trapdoor one-way)
* modular square (trapdoor one-way)

Discrete Log Based Systems

» Diffie-Hellman Key Exchange
\diamond Pohlig-Hellman Secret Key System
\diamond ElGamal Cryptosystem / Signature Scheme
\diamond Cramer-Shoup Cryptosystem
\triangleleft Digital Signature Standard (DSS, DSA)
\diamond Schnorr Signature Scheme
\triangleleft Paillier Cryptosystem (both Factoring \& DL)
\triangleleft Boneh-Franklin Identity-based Encryption

Compute Discrete Log

\triangleleft Pohlig-Hellman, Birthday Attack, Index-Calculus, Baby-step Giant-step
\rightarrow Preliminary:

* let α be a primitive root modulo p so $p-1$ is the smallest positive exponent such that $\alpha^{p-1} \equiv 1(\bmod p)$

$$
\alpha^{m_{1}} \equiv \alpha^{m_{2}}(\bmod p) \Leftrightarrow m_{1} \equiv m_{2}(\bmod p-1)
$$

* consider the discrete \log problem $\beta \equiv \alpha^{\alpha}(\bmod p)$, it is difficult to find out the value of x, but it is easy to find out whether x is even or odd i.e. $x(\bmod 2)$ or the LSB of x

* using the same method, if $2^{k} \mid p-1$, it is easy to calculate the k LSB bits of x

Baby-step Giant-step

\leftrightarrow Meet-in-the-middle algorithm for computing discrete logarithm
\& D. Shanks, 1971

To solve $\alpha^{\mathrm{x}} \equiv \beta(\bmod \mathrm{n})$,
(1) write $\mathrm{x}=\mathrm{im}+\mathrm{j}, 0 \leq \mathrm{i}, \mathrm{j}<\mathrm{m}=\lceil\sqrt{\mathrm{n}}\rceil$
(2) test all i, j, for $\beta\left(\alpha^{-\mathrm{m}}\right)^{\mathrm{i}}=\alpha^{j}(\bmod \mathrm{n})$
\diamond Running time and space complexity is $\mathrm{O}(\sqrt{\mathrm{n}})(\ll \mathrm{O}(\mathrm{n})$ brute-force $)$
\diamond A generic algorithm, works for every finite cyclic group.
\diamond not necessary to know the order of the group G in advance. It still works if n is merely an upper bound on the group order.
\diamond Usually is used for groups whose order is prime. Pohlig-Hellman algorithm is more efficient for composite order group.

Pohlig-Hellman Algorithm

\diamond compute the discrete logs when p-1 has only small prime factors
\diamond let $p-1=\prod_{i} q_{i}^{r_{i}}$ be the factorization of $p-1$ into prime numbers
\diamond Plans: compute $L_{\alpha}(\beta)\left(\bmod q_{i}^{r_{i}}\right)$ then use CRT to find $L_{\alpha}(\beta)$ $(\bmod p-1)$

$$
\text { let } x=x_{0}+x_{1} q+x_{2} q^{2}+\ldots+x_{\mathrm{r}-1} q^{\mathrm{r}-1}+\ldots
$$

$$
\text { where } x_{i} \in Z_{q} \quad \text { i.e. express } x \text { in } q \text {-ary representation }
$$

$x\left(\frac{p-1}{q}\right)=x_{0}\left(\frac{p-1}{q}\right)+(p-1)\left(x_{1}+x_{2} q+x_{3} q^{2}+\ldots\right)=x_{0}\left(\frac{p-1}{q}\right)+(p-1) n$
$\beta^{(p-1) / q}=\alpha^{x(p-1) / q}=\alpha^{x_{0}(p-1) / q}\left(\alpha^{(p-1)}\right)^{n}=\alpha^{x_{0}(p-1) / q}(\bmod p)$

Pohlig-Hellman Algorithm

To find x_{0}, we enumerate $\alpha^{k(p-1) / q}(\bmod p), k=0,1,2, \ldots q-1$, and match against with $\beta^{(p-1) / q}$, there is a unique solution since $k(p-1) / q(\bmod p-1)$ are all different for $k=0,1,2, \ldots q-1$
\triangleleft extension of the above procedure yields the remaining coefficients

$$
\begin{aligned}
& \text { assume } q^{2} \mid p-1 \quad \beta_{1} \equiv \beta \alpha^{-x_{0}} \equiv \alpha^{q\left(x_{1}+x_{2} q+\ldots\right)}(\bmod p) \\
& \begin{aligned}
\beta_{1}{ }^{(p-1) / q^{2}} & \equiv \alpha^{(p-1)\left(x_{1}+x_{2} q+\ldots\right) / q} \equiv \alpha^{x_{1}(p-1) / q}\left(\alpha^{(p-1))^{x_{2}+x_{3} q+} \ldots}\right. \\
& \equiv \alpha^{x_{1}(p-1) / q}(\bmod p)
\end{aligned}
\end{aligned}
$$

to find x_{1}, we enumerate $\alpha^{k(p-1) q}(\bmod p), k=0,1,2, \ldots q-1$, and match against with $\beta_{1}(p-1) / q^{2}$
\triangleleft Why should q be small for Pohlig-Hellman algorithm to work??

* The algorithm needs to enumerate $\alpha^{k(p-1) / q}(\bmod p), k=0,1, \ldots q-1$

Pohlig-Hellman Algorithm

\diamond Note: the above enumerations are the same in computing each x_{i} (i.e. can be stored and used several times)
\diamond In a Discrete Log based cryptosystem, we should make sure that $p-1$ has at least a large prime factor.
\diamond If $p-1=t \cdot q$ (i.e. $p-1$ has a large prime factor q), the algorithm can still determine $L_{\alpha}(\beta)(\bmod t)$ if t is composed of small prime factors. (still leaks much information, if $t=2^{10}, 10-$ LSB bits of $L_{\alpha}(\beta)$ will be known)

* Usually β is chosen to be a power of α^{t} such that $L_{\alpha}(\beta)(\bmod t)$ is zero.

$$
\beta=\left(\alpha^{2}\right)^{m} \equiv \alpha^{x}(\bmod p) \Rightarrow x \equiv t m(\bmod p-1) \Rightarrow x \equiv 0(\bmod t)
$$, the difficulty of this discrete \log problem is reduced no matter what β you choose. It only guarantees that $L_{\alpha}(\beta)$ $(\bmod q)$ is difficult, you should not hide any information in $L_{\alpha}(\beta)(\bmod t)$

Index Calculus

\diamond Idea is similar to the quadratic sieve method of factoring.
\diamond Factor base: prime numbers less than a bound $B,\left\{p_{1}, p_{2}, \ldots p_{m}\right\}$
\triangleleft Example: $\mathrm{p}=131, \alpha=2$. Let $\mathrm{B}=10$, consider the prime numbers $\{2,3,5,7\}$

$$
\left.\left.\begin{array}{l}
\begin{cases}2^{1} \equiv 2 & (\bmod 131) \\
2^{8} \equiv 5^{3} & (\bmod 131) \\
2^{12} \equiv 5 \cdot 7 & (\bmod 131) \\
2^{14} \equiv 3^{2} & (\bmod 131) \\
2^{34} \equiv 3 \cdot 5^{2} & (\bmod 131)\end{cases} \\
\Rightarrow \begin{cases}(\bmod 130)\end{cases} \\
\Rightarrow \begin{cases}L_{2}(2) \equiv 1 & (\bmod 130) \\
L_{2}(3) \equiv 72(\bmod 130) \\
L_{2}(5) \equiv 46(\bmod 130) \\
L_{2}(7) \equiv 96(\bmod 130) \\
12 \equiv L_{2}(2) \\
14 \equiv 2 L_{2}(5)+L_{2}(7) & (\bmod 130) \\
34 \equiv L_{2}(3)+2 L_{2}(5) & (\bmod 130)\end{cases} \\
(\bmod 130)
\end{array}\right] \begin{array}{l}
\text { If we want to compute } L_{2}(37) \\
\text { try a few random exponents and found } \\
37 \cdot 2^{43} \equiv 3 \cdot 5 \cdot 7(\bmod 131), \text { therefore }, \\
L_{2}(37) \equiv-43+L_{2}(3)+L_{2}(5)+L_{2}(7) \\
\equiv 41(\bmod 130)
\end{array}\right]
$$

Index Calculus

\leftrightarrow Precomputation:

* Compute $\alpha^{\mathrm{k}}(\bmod \mathrm{p})$ for several values of k
* Try to write it as a product of the primes less than B. i.e. $\alpha^{\mathrm{k}}=\Pi p_{\mathrm{i}}^{\mathrm{a}_{\mathrm{i}}}(\bmod \mathrm{p})$ If this is not the case, try another k . Then

$$
\mathrm{k} \equiv \sum \mathrm{a}_{\mathrm{i}} L_{\alpha}\left(\mathrm{p}_{\mathrm{i}}\right)(\bmod \mathrm{p}-1)
$$

when we have enough such relations, we can solve for $L_{\alpha}\left(p_{i}\right)$ for each i
\diamond For some random r , compute $\beta \alpha^{\mathrm{r}}$ and try to write it as a product of $\left\{p_{1}, p_{2}, \ldots p_{m}\right\}$ i.e. $\beta \alpha^{r}=\Pi p_{i}^{b_{i}}(\bmod p)$

$$
L_{\alpha}(\beta) \equiv-\mathrm{r}+\sum \mathrm{b}_{\mathrm{i}} L_{\alpha}\left(\mathrm{p}_{\mathrm{i}}\right)(\bmod \mathrm{p}-1)
$$

\diamond This algorithm is effective if p is of moderate size.
\diamond This means that p should be chosen to have at least 200 digits (~ 665 bits), if the discrete log problem is to be hard.

Computing Discrete Log Mod 4

\diamond Discrete Log Problem: Given α, β, p solving $x=L_{\alpha}(\beta)$ such that $\beta \equiv \alpha^{x}(\bmod p)$
\diamond Using Pohlig-Hellman Algorithm, if $p \equiv 1(\bmod 4)$, then it is easy to compute $L_{\alpha}(\beta)(\bmod 4)$
\triangleleft For $p \equiv 3(\bmod 4)$, Pohlig-Hellman Algorithm does not show us a way to calculate $L_{\alpha}(\beta)(\bmod 4)$ since it is easy to raise an integer to the $(p-1) / 2$ power but it is not easy to raise an integer to the $(p-1) / 4$ power.
\diamond Idea: we can take square root of a QR when $p \equiv 3(\bmod 4)$ i.e. Given y, find x, s.t. $x^{2} \equiv y(\bmod p)$

$$
x \equiv \pm y^{\frac{p+1}{4}}(\bmod p)
$$

Computing Discrete Log Mod 4

\diamond To find $\gamma^{(p-1) / 4}$: Can we find $\gamma^{(p-1) / 2}$ first and then take square root of it? In this way, it seems that we can calculate $L_{\alpha}(\beta)(\bmod 4)$ and even $L_{\alpha}(\beta)(\bmod 8) \ldots$ and the Discrete Log Problem can be easily solved???
\diamond What's wrong with the above arguments?

* From the formula on the previous slide, given $\gamma^{(p-1) / 2}$ you won't be able to get one single $\gamma^{(p-1) / 4}$, instead you get two possible values. Since $L_{\alpha}(\beta)(\bmod 4)$ has one bit more information than $L_{\alpha}(\beta)(\bmod 2)$, you actually do not get any more information through the procedure just described.
* On the next slide, we prove this with a 'reduction argument'. "if we have an algorithm that can calculate $L_{\alpha}(\beta)(\bmod 4)$ efficiently, we can use it to compute discrete \log quickly"

Computing Discrete Log Mod 4

\triangleleft Lemma. Let $p \equiv 3(\bmod 4)$ be prime, let $r \geq 2$, and let y be an integer. Suppose α and γ are two elements in $\mathrm{Z}_{\mathrm{p}}{ }^{*}$ such that $\gamma \equiv \alpha^{2^{r} y}(\bmod p)$. Then

$$
\gamma^{(p+1) 4}=\alpha^{2^{r-1} \mathrm{y}}(\bmod p)
$$

Proof:

$$
\begin{aligned}
\gamma^{(p+1) / 4} & \equiv \alpha^{(\mathrm{p}+1) 2^{r-2} \mathrm{y}}=\alpha^{(\mathrm{p}-1+2) 2^{r-2} \mathrm{y}} \equiv \alpha^{2^{\mathrm{r}-1} \mathrm{y}} \underbrace{(\mathrm{p}-1) 2^{2-2} \mathrm{y}} \\
& \equiv \alpha^{\alpha^{\mathrm{r}-1} \mathrm{y}}(\bmod p)
\end{aligned}
$$

Note: this is similar to the method of taking square root the key difference is that $\gamma^{(p+1) / 4}$ is equal to a single value instead of two, since $\alpha^{2^{r-1} y}$ is a quadratic residue (QR) which is always positive

Computing Discrete Log Mod 4

\diamond "if we have an algorithm that can calculate $L_{\alpha}(\beta)(\bmod 4)$ efficiently, we can use it to compute discrete log quickly"
Proof:
\diamond assume we have a machine that, given an input β, outputs $L_{\alpha}(\beta)(\bmod 4)$
\triangleleft assume $\beta \equiv \alpha^{x}(\bmod p)$, let $x=x_{0}+2 x_{1}+4 x_{2}+\ldots+2^{n} x_{n}$ be the binary representation of x, using the $L_{\alpha}(\beta)(\bmod 4)$ machine, we determine x_{0} and x_{1}
\diamond let $\beta_{2} \equiv \beta \alpha^{-\left(x_{0}+2 x_{1}\right)} \equiv \alpha^{2\left(x_{2}+2 x_{3}+2^{2 x_{4}}+\ldots\right)}(\bmod p)$, using the previous lemma, $\left(\beta_{2}\right)^{(\mathrm{p}+1) / 4} \equiv \alpha^{2\left(x_{2}+2 x_{3}+2^{\left.2 x_{4}+\ldots\right)}(\bmod p) \text {, using the } L_{\alpha}(\beta)(\bmod 4) \text { machine, we }\right.}$ determine X_{2}
\diamond repeat the above $\mathrm{n}-3$ times, we can obtain $\mathrm{x}_{3}, \mathrm{x}_{4}, \mathrm{x}_{5}, \ldots \mathrm{x}_{\mathrm{n}}$ and the discrete \log $L_{\alpha}(\beta)(\bmod p-1)$ is easily solved!!!
\diamond Because we believe that discrete \log is hard to compute in general, we are comfortable to accept that $L_{\alpha}(\beta)(\bmod 4)$ is difficult to calculate.

Bit Commitment

\diamond The story

* Alice claims that she has a method to predict the outcome of football games
* Alice wants to sell her method to Bob
* Bob asks her to prove her method works by predicting the result of the game that will be played this weekend.
* "No way!!" says Alice. "Then you will simply make your bets and not pay me. If you want me to prove my method works, why don't I show you my prediction for last weeks game?"
\diamond Alice wants to send a bit b to Bob. The requirements:
* Bob cannot determine the value of the bit without Alice's help
* Alice cannot change the bit once she sends it to Bob.
\triangleleft Analogy: Sealed Envelop, Locked Safety Box

Bit Commitment with DL

\triangleleft Alice and Bob agree on a large prime $p \equiv 3(\bmod 4)$ and a primitive root α
\diamond Commit

* Alice chooses a random number $x<p-1$ whose second bit x_{1} is b
* Alice sends $\beta=\alpha^{x}(\bmod p)$ to Bob
\diamond Reveal
* Alice sends Bob the full value of x
* Bob checks $\beta \equiv \alpha^{\chi}(\bmod p)$ and finds $b \equiv x(\bmod 4)$.
\diamond We assume that Bob cannot compute discrete logs for p. Therefore, he can not compute discrete logs modulo 4 (i.e. x_{1} or b).

Bit Commitment with DL

\diamond To avoid Alice denying that she knows x at the revealing stage, Bob could ask Alice to make a ZKP of knowing x at the commitment stage.
\diamond To avoid Alice denying that she had sent β, Bob could ask Alice to digitally sign β.

General Bit Commitment Schemes

\diamond Two stages:

* Commit
* Reveal (Disclosure)
\triangleleft Formal Requirements:
* Secrecy (hiding)
* Unambiguity (binding)
\diamond Various Schemes
* Using Symmetric Cryptography
* Using One Way Functions (eg. RSA, Discrete logs)
* Using Pseudo Random Number Generator (PRNG)
* Using Oblivious Transfer

Pohlig-Hellman Secret Key System

\diamond Secret Key system, Alice and Bob trust each other.
\triangleleft Alice and Bob share a pair of secret key $\left(x, x^{-1}\right)$ where $x \cdot x^{-1} \equiv 1(\bmod p-1), \operatorname{gcd}(\mathrm{x}, \mathrm{p}-1)=1($ i.e. x is odd), p is a large prime number and $(p-1) / 2$ is also a large prime number
\diamond Encryption

$$
c \equiv m^{x}(\bmod p)
$$

\diamond Decryption

$$
m \equiv c^{x^{-1}}(\bmod p)
$$

Note: 1. x^{-1} can be easily derived from x and p
2. $\operatorname{ord}_{p}(m)$ should be large $\left(\right.$ since $^{\text {ord }}(\mathrm{m}) \mid p-1$, it has better be $\mathrm{p}-1$ or $(\mathrm{p}-1) / 2)$

Diffie-Hellman Key Exchange

\triangleleft Diffie and Hellman, 1976, first Public Key System
\diamond Used now in IPSec and SSL for jointly generating encryption keys and exchanging symmetric data encryption keys (DES, 3DES...) the length of p is usually 1024 bits,
\triangleleft Protocol: often the order of α can be constrained to a 160-bit (or 256-bit) q, therefore, x_{a} and x_{b} can be reduced to 160 bit

* Alice and Bob use a public modulus p and a primitive α.
* Alice chooses a private exponent x_{a} in $Z_{p}{ }^{*}$, computes the public value $y_{a} \equiv \alpha^{x_{a}}(\bmod p)$, and sends y_{a} to Bob.
* Bob chooses a private exponent x_{b} in Z_{p}^{*}, computes the public value $y_{b} \equiv \alpha^{x_{b}}(\bmod p)$, and sends y_{b} to Alice.
* Alice calculates the shared key as $y_{b}{ }_{a}{ }_{a} \equiv \alpha^{x_{a}}{ }^{\chi_{b}}(\bmod p)$ and Bob calculates the shared key as $y_{a}^{\chi_{b}} \equiv \alpha^{x_{a}{ }^{\chi} b}(\bmod p)$

Diffie-Hellman Key Exchange

\diamond Any commutative one-way function can be used to design this type of public key distribution system. Other than the modulo exponential function, Lucas Function and Elliptic Curve Function are also candidates.

DDH problem

\diamond Computational Diffie-Hellman Assumption

* given g^{x} and g^{y}, there is no efficient algorithm that can compute $g^{x y}$
* do not guarantee that partial bits of $g^{x y}$ are hidden, the Legendre symbol of $g^{x y}$ is leaked
\diamond Decision Diffie-Hellman Assumption
* Boneh, 1998, "The decision Diffie-Hellman Problem"
* given g^{x} and g^{y}, there is no efficient algorithm that can distinguish the distribution of $<g^{x}, g^{y}, g^{x y}>$ and $<g^{x}, g^{y}, g^{z}>$
* far stronger than the DH assumption
* can be used to construct efficient cryptographic systems with strong security properties
* In a group where DDH does not hold, ElGamal Cryptosystem is not semantically secure (the Legendre symbol of m is leaked)

DDH problem (cont'd)

\diamond Legendre symbol of z in $Z_{p}^{*}: \mathrm{z}^{(\mathrm{p}-1) / 2}(\bmod \mathrm{p})$
if z is a QR_{p} then its Legendre symbol is 1 , otherwise -1
$\diamond g^{y}$ is a quadratic residue modulo p iff LSB of y is 0 (i.e. y is even)
\diamond If one of x or y is even, then xy is even and g^{xy} is a quadratic residue
\triangleleft The DDH assumption is stronger than the DL assumption:
Assuming that adversary cannot solve discrete log cannot guarantee that DH key exchange is safe. DH key exchange is only safe under the DDH assumption.
\checkmark break $\mathrm{DDH} \Leftarrow$ break $\mathrm{CDH} \Leftarrow$ break DL
DDH is secure $\Rightarrow \mathrm{CDH}$ is secure $\Rightarrow \mathrm{DL}$ is secure (intractable) (intractable) (intractable)
\diamond break RSA \Leftarrow break FACT RSA is secure \Rightarrow Fact is secure

DDH in $\mathrm{Z}_{\mathrm{p}}{ }^{*}$

\star Given $\mathrm{g}^{\mathrm{x}}, \mathrm{g}^{\mathrm{y}}, \mathrm{g}^{\mathrm{z}}$ one can easily test if x is odd, y is odd, and z is odd.
\triangleleft Ex. If x is odd, y is odd and z is even, then z can not be xy

$\mathrm{x} \quad \mathrm{y} \quad \mathrm{z}$	result
odd odd odd	nothing
odd odd even	$\mathrm{z} \neq \mathrm{xy}$
odd even odd	$\mathrm{z} \neq \mathrm{y}$
odd even even	nothing
even odd odd	$\mathrm{z} \neq \mathrm{xy}$
even odd even	nothing
even even odd	$\mathrm{z} \neq \mathrm{xy}$
even even even	nothing

in $Z_{p}{ }^{*}$, there are at least $1 / 2$ probability that DDH does not hold
\diamond Modification: consider the DDH problem in an order-q subgroup generated by $\mathrm{h}=\mathrm{g}^{2}(\bmod \mathrm{p})$ in $\mathrm{Z}_{\mathrm{p}}^{*}$ where $\mathrm{p}=2 \mathrm{q}+1, \mathrm{p}$ and q are prime numbers, g is a primitive in $Z_{p}{ }^{*}$

Goals of Modern Cryptography

\diamond Make the intractability assumption more adequate, specific, and clear
\diamond Design cryptosystem that depends on less strict assumptions
\diamond Proven security

Security of Diffie-Hellman Algorithm

\diamond still an assumption ... the 'DH assumption'
\diamond DH is secure \Rightarrow DL is secure (break DH \Leftarrow break DL) if DL is not secure, i.e. given g^{x} we can solve for x and given g^{y} we can solve for y, then DH is not secure. Eve can intercept g^{x} and g^{y} and easily derives x or y and computes the shared key $\left(g^{x}\right)^{y}$ or $\left(g^{y}\right)^{x}$
$\triangleleft \mathrm{DL}$ is secure $\nRightarrow \mathrm{DH}$ is secure
if DH can be broken, i.e. given g^{x} and g^{y}, shared key $\mathrm{k}=g^{x y}$ can be derived. Since $\mathrm{k}=\left(g^{x}\right)^{y}=\left(g^{y}\right)^{x}$, not too much information about x or y can be derived from the above equation.
\diamond In general, it is believed that DL is secure, but it does not provide any assurance about whether DH is secure (Eve might be able to predict some of the bits of $g^{x y}$)

Diffie-Hellman Key Exchange

\triangleleft Three or more parties

\triangleleft Conference Key Distribution System (CKDS)

Diffie-Hellman Key Exchange

\triangleleft Variants: Hughes Crypto'94

* Allow Alice to generate a key and send it to Bob

Alice

1. choose x
2. $\mathbf{k} \equiv \mathrm{g}^{\mathrm{x}}$

Bob
3. choose y

$$
\text { 6. } k \equiv\left(\left(g^{y}\right)^{x}\right)^{y^{-1}} \equiv g^{x}
$$

DH sharing secret keys in a group

\leftrightarrow If each pairs in a group (ex. \{A, B, C, D, E, F\}) want to use symmetric encryption system (like AES) to communicate frequently. They need to share, in this example, 30 keys. Everyone need to share five keys with others.
\diamond Alternative: Each one in the group chooses a secret number $\left\{\mathrm{X}_{\mathrm{a}}\right.$, $\left.\mathrm{x}_{\mathrm{b}}, \mathrm{x}_{\mathrm{c}}, \mathrm{x}_{\mathrm{d}}, \mathrm{x}_{\mathrm{e}}, \mathrm{x}_{\mathrm{f}}\right\}$. We can have a central database to keep and certify all public values $\left\{\mathrm{g}^{\mathrm{X}_{\mathrm{a}}}, \mathrm{g}^{\mathrm{x}_{\mathrm{b}}}, \mathrm{g}^{\mathbf{x}_{\mathrm{c}}}, \mathrm{g}^{\mathbf{x}_{\mathrm{d}}}, \mathrm{g}^{\mathrm{X}_{\mathrm{e}}}, \mathrm{g}^{\mathrm{x}_{\mathrm{f}}}\right\}$, and use DH as follows:

Diffie-Hellman Protocol and Attack

\diamond RFC 2631, Diffie-Hellman Key Agreement Method, E. Rescorla, June 1999
» small subgroup attack

* L. Law, A. Menezes, M. Qu, J. Solinas and S. Vanstone, "An efficient protocol for authenticated key agreement", Technical report CORR 98-05, University of Waterloo, 1998.
* C.H. Lim and P.J. Lee, "A key recovery attack on discrete log-based schemes using a prime order subgroup", Crypto'97, pp. 249-263.

3-Pass Communication Protocol

\diamond Shamir
\triangleleft Alice wants to send a secret message m to Bob. They use a common large prime number p
\diamond Protocol:

* Alice chooses a secret number x_{a} and Bob chooses a secret number x_{b} such that x_{a}^{-1} and $x_{b}{ }^{-1}(\bmod p-1)$ exist
* Alice sends $y_{1} \equiv m^{x_{a}}(\bmod p)$ to Bob
* Bob sends $y_{2} \equiv y_{1}{ }^{x_{b}}(\bmod p)$ to Alice
* Alice sends $y_{3} \equiv y_{2}{ }^{x^{-1}}(\bmod p)$ to Bob
* Bob computes $m \equiv y_{3}{ }^{x_{b}-1}(\bmod p)$

\diamond Key idea: modulo exponentiation is commutative
\triangleleft Analogy: a safety box with two locks
\diamond Any commutative trapdoor oneway function can be used

ElGamal PKC

\diamond ElGamal 1985 (9 years after Diffie-Hellman)
\diamond Probabilistic Encryption System: For the same public key, the same plaintext could give different ciphertexts in distinct encryption sessions. This can resist lowentropy attack.

Low entropy attack:
Number of messages is small.
Some messages occur much more often.
\Rightarrow low entropy in the source
For a deterministic encryption scheme, attacker can record the ciphertext frequency pattern and learn something or use chosen plaintext attack to compile a codebook to decipher the following ciphertext.
\diamond Application of Diffie-Hellman Algorithm

ElGamal PKC

\diamond Alice wants to send a message to Bob
\triangleleft Bob first chooses a large prime number $p, p=2 q+1$, q is also prime, a primitive root α^{\prime}, calculate $\alpha=\alpha^{\prime 2}$, a secret integer a in Z^{*}, and compute $\beta \equiv \alpha^{a}(\bmod p)$

* Bob’s Private Key: a
* Bob's Public Key: (p, α, β)
\triangleleft Encryption:
* Alice downloads Bob's public key (p, α, β)
* Alice chooses a secret random integer $k \in \mathbb{Z}_{\mathrm{p}}^{*}$ and compute $r \equiv \alpha^{k}(\bmod p)$
* Alice computes $t=\beta^{k} \cdot m(\bmod p)$
* Alice sends the ciphertext (r, t) to Bob
\diamond Decryption
* Bob computes $m \equiv t \cdot r^{-a}(\bmod p)$

Alice

ElGamal PKC

\diamond Security

* If Eve knows a, she can calculate the key $r^{a} \equiv\left(\alpha^{k}\right)^{a}$ and decrypt (r, t) like Bob. Therefore, Bob has to keep a secret. By looking at the public key $\beta \equiv \alpha^{a}$ and $r \equiv \alpha^{k}$, Eve can either solve the DH problem to recover the key $\alpha^{k a}$ or solve the DLP to recover a directly, and therefore, the key $\left(\alpha^{k}\right)^{a}$.
* If Eve knows the random value k, she can calculate the key by calculating $\beta^{k} \equiv\left(\alpha^{a}\right)^{k}$, and decrypt (r, t) by calculating $m \equiv t \cdot \beta^{-k}$ $(\bmod p)$. Therefore, Alice has to keep k secret. By looking at the public value $r \equiv \alpha^{k}$ and $\beta \equiv \alpha^{a}$, Eve can either solve the DH problem to recover the key $\alpha^{k a}$ or solve the DLP to recover k directly, and therefore, the key $\left(\alpha^{a}\right)^{k}$.
(ElGamal PKC is secure $\Leftrightarrow \mathrm{DDH}$ is secure) $\underset{\sim}{\Rightarrow} \mathrm{DL}$ is secure

ElGamal PKC

\diamond Security:

* If k is a random integer in $Z_{\mathrm{p}}{ }^{*}$, and if β is a primitive in $\mathrm{Z}_{\mathrm{p}}{ }^{*}$, then β^{k} is a random integer in $Z_{\mathrm{p}}{ }^{*}$ and $t \equiv \beta^{k} \cdot m(\bmod p)$ is a random integer in $\mathrm{Z}_{\mathrm{p}}{ }^{*}$. (recall the $\psi(\mathrm{x})$ in proving the Fermat's Little Theorem). Knowing t and r without knowing a or k does not give Eve any information about m.
* Different k should be used for each m If one k is used for two messages m_{1} and m_{2} sent to Bob, i.e. $\left(r, t_{1}\right)$ and $\left(r, t_{2}\right)$, then Eve can determine m_{1} from m_{2} or m_{2} from m_{1} since

$$
t_{1} / m_{1} \equiv t_{2} / m_{2} \equiv \beta^{k}(\bmod p)
$$

Therefore, it Eve knows m_{1}

$$
m_{2} \equiv t_{2} m_{1} / t_{1}(\bmod p)
$$

ElGamal PKC

\diamond Is ElGamel Encryption commutative?
i.e. $\mathrm{E}_{2}\left(\mathrm{E}_{1}(m) \geqslant \mathrm{E}_{1}\left(\mathrm{E}_{2}(m)\right)\right.$ or
$\mathrm{D}_{1}\left(\mathrm{E}_{2}\left(\mathrm{E}_{1}(m)\right) \stackrel{?}{7} \mathrm{E}_{2}(m)\right.$

* let's say E_{1} is for Alice to encrypt messages for Bob and E_{2} is for Bob to encrypt messages for Carol
* if both encryption use the same modulus p, then

$$
\mathrm{D}_{1}\left(\mathrm{E}_{2}\left(\mathrm{E}_{1}(m)\right)=\left(\beta_{2}{ }^{k_{2}} \cdot\left(\beta_{1}{ }^{k_{1}} \cdot m\right)\right) \cdot \mathrm{r}_{1}^{-a_{1}}=\beta_{2} k_{2} \cdot m=\mathrm{E}_{2}(m)\right.
$$

* answer is yes if using the same modulus

Semantic Security of ElGamal PKC

\diamond Is ElGamal encryption semantically secure?

* NOT in arbitrary group: ex. In $\mathrm{Z}_{\mathrm{p}}{ }^{*}$ with a primitive α

Public key: α is a primitive root, $\beta \equiv \alpha^{a}(\bmod p)$
Ciphertext: $(r, t)=\left(\alpha^{k}, \beta^{k} \cdot m\right)$

$$
\begin{aligned}
& \text { Since } \alpha \text { be a primitive root in } Z_{p}{ }^{*} \text {, } \\
& \qquad \text { Let } \mathrm{m} \equiv \alpha^{x}(\bmod p) \text { and } \mathrm{t} \equiv \alpha^{y}(\bmod \mathrm{p})
\end{aligned}
$$

$$
\text { then } y \equiv a \cdot k+x(\bmod p-1)
$$

a	k	y	deductión	a	k	y	deduction
	dd		x is even	eve	od	odd	x is odd
odd	dd	ve	x is odd	eve	odd	ven	x is even
odd	n		x is odd		even		x is odd
odd		eve	x is even	eve		even	x is even

* Only in an order- q subgroup generated by $\alpha \equiv \mathrm{g}^{2}(\bmod p)$ in Z_{p}^{*} where $\mathrm{p}=2 \mathrm{q}+1, \mathrm{p}$ and q are prime numbers, g is a primitive in $\mathrm{Z}_{\mathrm{p}}{ }^{*}$, under the assumption of DDH

Rogue Key Attack

\checkmark A group insider registers public keys as a function of other's public key without demonstrating the possession of the corresponding private keys. e.g.

Alice \quad Bob registers two related public keys

$$
\begin{array}{lll}
\mathrm{pk}_{\mathrm{A}}: \mathrm{g}^{\mathrm{x}} & \mathrm{pk}_{\mathrm{B}_{1}}: \mathrm{g}^{2 \mathrm{x}} & \mathrm{pk}_{\mathrm{B}_{2}}: \mathrm{g}^{3 \mathrm{x}} \\
\mathrm{sk}_{\mathrm{A}}: \mathrm{x}
\end{array}
$$

Assume that sender S wants to broadcast to $\mathrm{A}, \mathrm{B}_{1}, \mathrm{~B}_{2}$ keys $\mathrm{K}_{\mathrm{A}}, \mathrm{K}, \mathrm{K}$ with the following ElGamal ciphertext $\left(g^{r},\left(g^{x}\right)^{r} K_{A},\left(g^{2 x}\right)^{r} K\right.$,

Bob can obtain K_{A} by calculating $\left.\left(\mathrm{g}^{\mathrm{X}}\right)^{\mathrm{r}} \mathrm{K}_{\mathrm{A}} *\left(\mathrm{~g}^{2 \mathrm{x}}\right)^{\mathrm{r}} \mathrm{K} *\left(\mathrm{~g}^{3 x}\right)^{\mathrm{r}} \mathrm{K}\right)^{-1}$
The problems are: shared randomness, CA does not verify the ownership of the private key.

Discrete Logarithm Timeline

