
RSA Cryptosystem

密碼學與應用
海洋大學資訊工程系

丁培毅丁培毅

Naïve Public Key SystemNaïve Public Key System
 Encryption and decryption algorithm are not the same Encryption and decryption algorithm are not the same

2

Naïve Public Key SystemNaïve Public Key System
 Encryption and decryption algorithm are not the same Encryption and decryption algorithm are not the same
 Public/private key pair: private key is related to public

ke b t can not be easil deri ed from p blic kekey but can not be easily derived from public key

2

Naïve Public Key SystemNaïve Public Key System
 Encryption and decryption algorithm are not the same Encryption and decryption algorithm are not the same
 Public/private key pair: private key is related to public

ke b t can not be easil deri ed from p blic kekey but can not be easily derived from public key
 Illustrating example:

*m Z11
*

2

Naïve Public Key SystemNaïve Public Key System
 Encryption and decryption algorithm are not the same Encryption and decryption algorithm are not the same
 Public/private key pair: private key is related to public

ke b t can not be easil deri ed from p blic kekey but can not be easily derived from public key
 Illustrating example:

*m Z11
*

m * 1 = m (mod 11)()

2

Naïve Public Key SystemNaïve Public Key System
 Encryption and decryption algorithm are not the same Encryption and decryption algorithm are not the same
 Public/private key pair: private key is related to public

ke b t can not be easil deri ed from p blic kekey but can not be easily derived from public key
 Illustrating example:

*m Z11
*

m * 1 = m (mod 11)()
m * 8 * 8-1 = m (mod 11)

2

Naïve Public Key SystemNaïve Public Key System
 Encryption and decryption algorithm are not the same Encryption and decryption algorithm are not the same
 Public/private key pair: private key is related to public

ke b t can not be easil deri ed from p blic kekey but can not be easily derived from public key
 Illustrating example:

*m Z11
*

m * 1 = m (mod 11)()
m * 8 * 8-1 = m (mod 11)

encryption

2

Naïve Public Key SystemNaïve Public Key System
 Encryption and decryption algorithm are not the same Encryption and decryption algorithm are not the same
 Public/private key pair: private key is related to public

ke b t can not be easil deri ed from p blic kekey but can not be easily derived from public key
 Illustrating example:

*m Z11
*

m * 1 = m (mod 11)()
m * 8 * 8-1 = m (mod 11)

encryption

d ti

2

decryption

Naïve Public Key SystemNaïve Public Key System
 Encryption and decryption algorithm are not the same Encryption and decryption algorithm are not the same
 Public/private key pair: private key is related to public

ke b t can not be easil deri ed from p blic kekey but can not be easily derived from public key
 Illustrating example:

*m Z11
*

m * 1 = m (mod 11)()
m * 8 * 8-1 = m (mod 11)

encryption

d ti

8 is the public key

2

decryption

Naïve Public Key SystemNaïve Public Key System
 Encryption and decryption algorithm are not the same Encryption and decryption algorithm are not the same
 Public/private key pair: private key is related to public

ke b t can not be easil deri ed from p blic kekey but can not be easily derived from public key
 Illustrating example:

*m Z11
*

m * 1 = m (mod 11)()
m * 8 * 8-1 = m (mod 11)

encryption

d ti

8 is the public key
m * 8 is the ciphertext

2

decryption

Naïve Public Key SystemNaïve Public Key System
 Encryption and decryption algorithm are not the same Encryption and decryption algorithm are not the same
 Public/private key pair: private key is related to public

ke b t can not be easil deri ed from p blic kekey but can not be easily derived from public key
 Illustrating example:

*m Z11
*

m * 1 = m (mod 11)()
m * 8 * 8-1 = m (mod 11)

encryption

d ti

8 is the public key
m * 8 is the ciphertext
8-1 is the private key (if nobody

2

decryption
p y (y

can derive this from the public
key, then this system is secure)

Knapsack (Subset Sum) PKCKnapsack (Subset Sum) PKC
 Merkel and Hellman, “Hiding Information and Signatures

in Trapdoor Knapsacks,” IT-24, 1978

3

Knapsack (Subset Sum) PKCKnapsack (Subset Sum) PKC
 Merkel and Hellman, “Hiding Information and Signatures

in Trapdoor Knapsacks,” IT-24, 1978
 a good application of an NP problem on designing public key

lcryptosystem; no longer secure

3

Knapsack (Subset Sum) PKCKnapsack (Subset Sum) PKC
 Merkel and Hellman, “Hiding Information and Signatures

in Trapdoor Knapsacks,” IT-24, 1978
 a good application of an NP problem on designing public key

lcryptosystem; no longer secure
 Super-increasing sequence:

i-1
{a1, a2, … an} such that ai > aj e.g. 1, 3, 5, 10, 20, 40

j=0

i-1

3

Knapsack (Subset Sum) PKCKnapsack (Subset Sum) PKC
 Merkel and Hellman, “Hiding Information and Signatures

in Trapdoor Knapsacks,” IT-24, 1978
 a good application of an NP problem on designing public key

lcryptosystem; no longer secure
 Super-increasing sequence:

i-1
{a1, a2, … an} such that ai > aj e.g. 1, 3, 5, 10, 20, 40

j=0

i-1

 Note: 1. Given a number c, finding a subset {aj} s.t. c = aj
is an easy problem, e.g. 48 = 40 + 5 + 3 j

3

Knapsack (Subset Sum) PKCKnapsack (Subset Sum) PKC
 Merkel and Hellman, “Hiding Information and Signatures

in Trapdoor Knapsacks,” IT-24, 1978
 a good application of an NP problem on designing public key

lcryptosystem; no longer secure
 Super-increasing sequence:

i-1
{a1, a2, … an} such that ai > aj e.g. 1, 3, 5, 10, 20, 40

j=0

i-1

 Note: 1. Given a number c, finding a subset {aj} s.t. c = aj
is an easy problem, e.g. 48 = 40 + 5 + 3 j

2. Sum of every subset S, 　 aj < 2 ꞏ aM where aM = max{aj}jS jS

3

Knapsack (Subset Sum) PKCKnapsack (Subset Sum) PKC
 Merkel and Hellman, “Hiding Information and Signatures

in Trapdoor Knapsacks,” IT-24, 1978
 a good application of an NP problem on designing public key

lcryptosystem; no longer secure
 Super-increasing sequence:

i-1
{a1, a2, … an} such that ai > aj e.g. 1, 3, 5, 10, 20, 40

j=0

i-1

 Note: 1. Given a number c, finding a subset {aj} s.t. c = aj
is an easy problem, e.g. 48 = 40 + 5 + 3 j

2. Sum of every subset S, 　 aj < 2 ꞏ aM where aM = max{aj}

3. Every possible subset sum is unique
jS jS

3

3. Every possible subset sum is unique
pf: given x, assume x = 　 aj = aj, where S 　T, assume max{aj} 　

max{aj} …. jS jT jS jT

Knapsack (Subset Sum) PKCKnapsack (Subset Sum) PKC
 choose a number b in Zp

*, e.g. p = 101, b = 23, and convert the p
super-increasing sequence to a normal knapsack sequence
B={b1, b2, …, bn} where bi ai ꞏ b (mod p)1 2 n i i

4

Knapsack (Subset Sum) PKCKnapsack (Subset Sum) PKC
 choose a number b in Zp

*, e.g. p = 101, b = 23, and convert the p
super-increasing sequence to a normal knapsack sequence
B={b1, b2, …, bn} where bi ai ꞏ b (mod p)1 2 n i i

e.g. A={1, 3, 5, 10, 20, 40} 　 B={23, 69, 14, 28, 56, 11}

4

Knapsack (Subset Sum) PKCKnapsack (Subset Sum) PKC
 choose a number b in Zp

*, e.g. p = 101, b = 23, and convert the p
super-increasing sequence to a normal knapsack sequence
B={b1, b2, …, bn} where bi ai ꞏ b (mod p)1 2 n i i

e.g. A={1, 3, 5, 10, 20, 40} 　 B={23, 69, 14, 28, 56, 11}
 Since gcd(b p)=1 this conversion is invertible i e Since gcd(b, p) 1, this conversion is invertible, i.e.

ai bi ꞏ b-1 (mod p)

4

Knapsack (Subset Sum) PKCKnapsack (Subset Sum) PKC
 choose a number b in Zp

*, e.g. p = 101, b = 23, and convert the p
super-increasing sequence to a normal knapsack sequence
B={b1, b2, …, bn} where bi ai ꞏ b (mod p)1 2 n i i

e.g. A={1, 3, 5, 10, 20, 40} 　 B={23, 69, 14, 28, 56, 11}
 Since gcd(b p)=1 this conversion is invertible i e Since gcd(b, p) 1, this conversion is invertible, i.e.

ai bi ꞏ b-1 (mod p)

b 1 22 (d 101) h h b b 1 1 (d)e.g. b-1 　 22 (mod 101) such that b ꞏ b-1 1 (mod p)

4

Knapsack (Subset Sum) PKCKnapsack (Subset Sum) PKC
 choose a number b in Zp

*, e.g. p = 101, b = 23, and convert the p
super-increasing sequence to a normal knapsack sequence
B={b1, b2, …, bn} where bi ai ꞏ b (mod p)1 2 n i i

e.g. A={1, 3, 5, 10, 20, 40} 　 B={23, 69, 14, 28, 56, 11}
 Since gcd(b p)=1 this conversion is invertible i e Since gcd(b, p) 1, this conversion is invertible, i.e.

ai bi ꞏ b-1 (mod p)

b 1 22 (d 101) h h b b 1 1 (d)e.g. b-1 　 22 (mod 101) such that b ꞏ b-1 1 (mod p)
 Given a number d, finding a subset {bj}B s.t.

d = bj (mod p)

i NP l t bl 94 11 + 14 + 69

j

4

is an NP-complete problem, e.g. 94 = 11 + 14 + 69

Knapsack (Subset Sum) PKCKnapsack (Subset Sum) PKC
 Encryption:

5

Knapsack (Subset Sum) PKCKnapsack (Subset Sum) PKC
 Encryption:

 public key: normal knapsack seq. B={23, 69, 14, 28, 56, 11}

5

Knapsack (Subset Sum) PKCKnapsack (Subset Sum) PKC
 Encryption:

 public key: normal knapsack seq. B={23, 69, 14, 28, 56, 11}
 message m, 0 m < 26, e.g. (60)10 = (111100)2

5

Knapsack (Subset Sum) PKCKnapsack (Subset Sum) PKC
 Encryption:

 public key: normal knapsack seq. B={23, 69, 14, 28, 56, 11}
 message m, 0 m < 26, e.g. (60)10 = (111100)2
 sum up the corresponding elements of ‘1’ bits, e.g.

23 + 69 + 14 + 28 = 134 is the ciphertext

5

Knapsack (Subset Sum) PKCKnapsack (Subset Sum) PKC
 Encryption:

 public key: normal knapsack seq. B={23, 69, 14, 28, 56, 11}
 message m, 0 m < 26, e.g. (60)10 = (111100)2
 sum up the corresponding elements of ‘1’ bits, e.g.

23 + 69 + 14 + 28 = 134 is the ciphertext
D ti Decryption:

5

Knapsack (Subset Sum) PKCKnapsack (Subset Sum) PKC
 Encryption:

 public key: normal knapsack seq. B={23, 69, 14, 28, 56, 11}
 message m, 0 m < 26, e.g. (60)10 = (111100)2
 sum up the corresponding elements of ‘1’ bits, e.g.

23 + 69 + 14 + 28 = 134 is the ciphertext
D ti Decryption:
 private key: b-1=22, p=101, A={1, 3, 5, 10, 20, 40}

5

Knapsack (Subset Sum) PKCKnapsack (Subset Sum) PKC
 Encryption:

 public key: normal knapsack seq. B={23, 69, 14, 28, 56, 11}
 message m, 0 m < 26, e.g. (60)10 = (111100)2
 sum up the corresponding elements of ‘1’ bits, e.g.

23 + 69 + 14 + 28 = 134 is the ciphertext
D ti Decryption:
 private key: b-1=22, p=101, A={1, 3, 5, 10, 20, 40}
 l l t 134 * 22 d 101 19 calculate 134 * 22 mod 101 = 19

5

Knapsack (Subset Sum) PKCKnapsack (Subset Sum) PKC
 Encryption:

 public key: normal knapsack seq. B={23, 69, 14, 28, 56, 11}
 message m, 0 m < 26, e.g. (60)10 = (111100)2
 sum up the corresponding elements of ‘1’ bits, e.g.

23 + 69 + 14 + 28 = 134 is the ciphertext
D ti Decryption:
 private key: b-1=22, p=101, A={1, 3, 5, 10, 20, 40}
 l l t 134 * 22 d 101 19 calculate 134 * 22 mod 101 = 19
 use the corresponding super-increasing knapsack seq. A={1,

3, 5, 10, 20, 40} to decrypt as follows:, , , , } yp

5

Knapsack (Subset Sum) PKCKnapsack (Subset Sum) PKC
 Encryption:

 public key: normal knapsack seq. B={23, 69, 14, 28, 56, 11}
 message m, 0 m < 26, e.g. (60)10 = (111100)2
 sum up the corresponding elements of ‘1’ bits, e.g.

23 + 69 + 14 + 28 = 134 is the ciphertext
D ti Decryption:
 private key: b-1=22, p=101, A={1, 3, 5, 10, 20, 40}
 l l t 134 * 22 d 101 19 calculate 134 * 22 mod 101 = 19
 use the corresponding super-increasing knapsack seq. A={1,

3, 5, 10, 20, 40} to decrypt as follows:, , , , } yp
 19 < 40, mark a ‘0’

5

Knapsack (Subset Sum) PKCKnapsack (Subset Sum) PKC
 Encryption:

 public key: normal knapsack seq. B={23, 69, 14, 28, 56, 11}
 message m, 0 m < 26, e.g. (60)10 = (111100)2
 sum up the corresponding elements of ‘1’ bits, e.g.

23 + 69 + 14 + 28 = 134 is the ciphertext
D ti Decryption:
 private key: b-1=22, p=101, A={1, 3, 5, 10, 20, 40}
 l l t 134 * 22 d 101 19 calculate 134 * 22 mod 101 = 19
 use the corresponding super-increasing knapsack seq. A={1,

3, 5, 10, 20, 40} to decrypt as follows:, , , , } yp
 19 < 40, mark a ‘0’
 19 < 20, mark a ‘0’

5

Knapsack (Subset Sum) PKCKnapsack (Subset Sum) PKC
 Encryption:

 public key: normal knapsack seq. B={23, 69, 14, 28, 56, 11}
 message m, 0 m < 26, e.g. (60)10 = (111100)2
 sum up the corresponding elements of ‘1’ bits, e.g.

23 + 69 + 14 + 28 = 134 is the ciphertext
D ti Decryption:
 private key: b-1=22, p=101, A={1, 3, 5, 10, 20, 40}
 l l t 134 * 22 d 101 19 calculate 134 * 22 mod 101 = 19
 use the corresponding super-increasing knapsack seq. A={1,

3, 5, 10, 20, 40} to decrypt as follows:, , , , } yp
 19 < 40, mark a ‘0’
 19 < 20, mark a ‘0’
 19 10, mark a ‘1’ and subtract 10 from 19

5

Knapsack (Subset Sum) PKCKnapsack (Subset Sum) PKC
 Encryption:

 public key: normal knapsack seq. B={23, 69, 14, 28, 56, 11}
 message m, 0 m < 26, e.g. (60)10 = (111100)2
 sum up the corresponding elements of ‘1’ bits, e.g.

23 + 69 + 14 + 28 = 134 is the ciphertext
D ti Decryption:
 private key: b-1=22, p=101, A={1, 3, 5, 10, 20, 40}
 l l t 134 * 22 d 101 19 calculate 134 * 22 mod 101 = 19
 use the corresponding super-increasing knapsack seq. A={1,

3, 5, 10, 20, 40} to decrypt as follows:, , , , } yp
 19 < 40, mark a ‘0’
 19 < 20, mark a ‘0’
 19 10, mark a ‘1’ and subtract 10 from 19

9 5 k ‘1’ d b 5 f 9

5

 9 5, mark a ‘1’ and subtract 5 from 9

Knapsack (Subset Sum) PKCKnapsack (Subset Sum) PKC
 Encryption:

 public key: normal knapsack seq. B={23, 69, 14, 28, 56, 11}
 message m, 0 m < 26, e.g. (60)10 = (111100)2
 sum up the corresponding elements of ‘1’ bits, e.g.

23 + 69 + 14 + 28 = 134 is the ciphertext
D ti Decryption:
 private key: b-1=22, p=101, A={1, 3, 5, 10, 20, 40}
 l l t 134 * 22 d 101 19 calculate 134 * 22 mod 101 = 19
 use the corresponding super-increasing knapsack seq. A={1,

3, 5, 10, 20, 40} to decrypt as follows:, , , , } yp
 19 < 40, mark a ‘0’
 19 < 20, mark a ‘0’
 19 10, mark a ‘1’ and subtract 10 from 19

9 5 k ‘1’ d b 5 f 9

5

 9 5, mark a ‘1’ and subtract 5 from 9
 4 3, mark a ‘1’ and subtract 3 from 4

Knapsack (Subset Sum) PKCKnapsack (Subset Sum) PKC
 Encryption:

 public key: normal knapsack seq. B={23, 69, 14, 28, 56, 11}
 message m, 0 m < 26, e.g. (60)10 = (111100)2
 sum up the corresponding elements of ‘1’ bits, e.g.

23 + 69 + 14 + 28 = 134 is the ciphertext
D ti Decryption:
 private key: b-1=22, p=101, A={1, 3, 5, 10, 20, 40}
 l l t 134 * 22 d 101 19 calculate 134 * 22 mod 101 = 19
 use the corresponding super-increasing knapsack seq. A={1,

3, 5, 10, 20, 40} to decrypt as follows:, , , , } yp
 19 < 40, mark a ‘0’
 19 < 20, mark a ‘0’
 19 10, mark a ‘1’ and subtract 10 from 19

9 5 k ‘1’ d b 5 f 9

5

 9 5, mark a ‘1’ and subtract 5 from 9
 4 3, mark a ‘1’ and subtract 3 from 4

 recovered message is (111100)2 = (60)10

Knapsack (Subset Sum) PKCKnapsack (Subset Sum) PKC
 Why does it work? Why does it work?

6

Knapsack (Subset Sum) PKCKnapsack (Subset Sum) PKC
 Why does it work? Why does it work?

let the plaintext be (111100)2
ciphertext c = b + b + b + bciphertext c = b1 + b2 + b3 + b4

6

Knapsack (Subset Sum) PKCKnapsack (Subset Sum) PKC
 Why does it work? Why does it work?

let the plaintext be (111100)2
ciphertext c = b + b + b + bciphertext c = b1 + b2 + b3 + b4

　 a1 b + a2 b + a3 b + a4 b (mod p)

6

Knapsack (Subset Sum) PKCKnapsack (Subset Sum) PKC
 Why does it work? Why does it work?

let the plaintext be (111100)2
ciphertext c = b + b + b + bciphertext c = b1 + b2 + b3 + b4

　 a1 b + a2 b + a3 b + a4 b (mod p)
decryption: c b-1 (mod p) a1 + a2 + a3 + a4 (mod p)

6

Knapsack (Subset Sum) PKCKnapsack (Subset Sum) PKC
 Why does it work? Why does it work?

let the plaintext be (111100)2
ciphertext c = b + b + b + bciphertext c = b1 + b2 + b3 + b4

　 a1 b + a2 b + a3 b + a4 b (mod p)
decryption: c b-1 (mod p) a1 + a2 + a3 + a4 (mod p)

is a subset sum problem of ap

6

Knapsack (Subset Sum) PKCKnapsack (Subset Sum) PKC
 Why does it work? Why does it work?

let the plaintext be (111100)2
ciphertext c = b + b + b + bciphertext c = b1 + b2 + b3 + b4

　 a1 b + a2 b + a3 b + a4 b (mod p)
decryption: c b-1 (mod p) a1 + a2 + a3 + a4 (mod p)

is a subset sum problem of ap
super-increasing sequence

6

RSA and RabinRSA and Rabin
 two important cryptosystems based on the p yp y

difficulty of integer factoring (an NP problem) are
introduced as follows:

7

RSA and RabinRSA and Rabin
 two important cryptosystems based on the p yp y

difficulty of integer factoring (an NP problem) are
introduced as follows:

 RSA’s underlying problem

7

RSA and RabinRSA and Rabin
 two important cryptosystems based on the p yp y

difficulty of integer factoring (an NP problem) are
introduced as follows:

 RSA’s underlying problem
S l i th t d l i diffi ltSolving e-th root modulo n is difficult

y 　 xe (mod n)

7

RSA and RabinRSA and Rabin
 two important cryptosystems based on the p yp y

difficulty of integer factoring (an NP problem) are
introduced as follows:

 RSA’s underlying problem
S l i th t d l i diffi ltSolving e-th root modulo n is difficult

y 　 xe (mod n)RSA function

7

RSA and RabinRSA and Rabin
 two important cryptosystems based on the p yp y

difficulty of integer factoring (an NP problem) are
introduced as follows:

 RSA’s underlying problem
S l i th t d l i diffi ltSolving e-th root modulo n is difficult

y 　 xe (mod n)RSA function

 Rabin’s underlying problem

7

RSA and RabinRSA and Rabin
 two important cryptosystems based on the p yp y

difficulty of integer factoring (an NP problem) are
introduced as follows:

 RSA’s underlying problem
S l i th t d l i diffi ltSolving e-th root modulo n is difficult

y 　 xe (mod n)RSA function

 Rabin’s underlying problem
Solving square root modulo n is difficultSolving square root modulo n is difficult

y 　 x2 (mod n)
Rabin function

7

Rabin function

RSA and RabinRSA and Rabin
 two important cryptosystems based on the p yp y

difficulty of integer factoring (an NP problem) are
introduced as follows:

 RSA’s underlying problem
S l i th t d l i diffi lt

n = p ꞏ q

Solving e-th root modulo n is difficult
y 　 xe (mod n)RSA function

 Rabin’s underlying problem
Solving square root modulo n is difficultSolving square root modulo n is difficult

y 　 x2 (mod n)
Rabin function

7

Rabin function

RSA and RabinRSA and Rabin
 two important cryptosystems based on the p yp y

difficulty of integer factoring (an NP problem) are
introduced as follows:

 RSA’s underlying problem
S l i th t d l i diffi lt

n = p ꞏ q

Solving e-th root modulo n is difficult
y 　 xe (mod n)RSA function

 Rabin’s underlying problem
Solving square root modulo n is difficultSolving square root modulo n is difficult

y 　 x2 (mod n)
Rabin function

7

Rabin function

both functions are candidates for trapdoor one way function

RSA and Rabin FunctionRSA and Rabin Function
 Solving e-th root of y modulo n is difficult!!!

8

RSA and Rabin FunctionRSA and Rabin Function
 Solving e-th root of y modulo n is difficult!!!

y 　 xe (mod n), where gcd(e, 　(n)) = 1

8

RSA and Rabin FunctionRSA and Rabin Function
 Solving e-th root of y modulo n is difficult!!!

y 　 xe (mod n), where gcd(e, 　(n)) = 1
Why don’t we take (e-1)-th power of y?

8

RSA and Rabin FunctionRSA and Rabin Function
 Solving e-th root of y modulo n is difficult!!!

y 　 xe (mod n), where gcd(e, 　(n)) = 1
Why don’t we take (e-1)-th power of y?

h 1 1 (d ())where e-1 ꞏ e 1 (mod (n))

8

RSA and Rabin FunctionRSA and Rabin Function
 Solving e-th root of y modulo n is difficult!!!

y 　 xe (mod n), where gcd(e, 　(n)) = 1
Why don’t we take (e-1)-th power of y?

h 1 1 (d ())where e-1 ꞏ e 1 (mod (n))
e.g. n = 11 ꞏ 13 = 143, e = 7

8

RSA and Rabin FunctionRSA and Rabin Function
 Solving e-th root of y modulo n is difficult!!!

y 　 xe (mod n), where gcd(e, 　(n)) = 1
Why don’t we take (e-1)-th power of y?

h 1 1 (d ())where e-1 ꞏ e 1 (mod (n))
e.g. n = 11 ꞏ 13 = 143, e = 7

(n) = 10 ꞏ 12 = 120 e-1 = 103(n) = 10 12 = 120, e = 103

8

RSA and Rabin FunctionRSA and Rabin Function
 Solving e-th root of y modulo n is difficult!!!

T bl H d

y 　 xe (mod n), where gcd(e, 　(n)) = 1
Why don’t we take (e-1)-th power of y?

h 1 1 (d ()) Trouble: How do we
know (n) ?

where e-1 ꞏ e 1 (mod (n))
e.g. n = 11 ꞏ 13 = 143, e = 7

(n) = 10 ꞏ 12 = 120 e-1 = 103(n) = 10 12 = 120, e = 103

8

RSA and Rabin FunctionRSA and Rabin Function
 Solving e-th root of y modulo n is difficult!!!

T bl H d

y 　 xe (mod n), where gcd(e, 　(n)) = 1
Why don’t we take (e-1)-th power of y?

h 1 1 (d ()) Trouble: How do we
know (n) ?

where e-1 ꞏ e 1 (mod (n))
e.g. n = 11 ꞏ 13 = 143, e = 7

(n) = 10 ꞏ 12 = 120 e-1 = 103(n) = 10 12 = 120, e = 103

 Solving square root of y modulo n is difficult!!!

8

RSA and Rabin FunctionRSA and Rabin Function
 Solving e-th root of y modulo n is difficult!!!

T bl H d

y 　 xe (mod n), where gcd(e, 　(n)) = 1
Why don’t we take (e-1)-th power of y?

h 1 1 (d ()) Trouble: How do we
know (n) ?

where e-1 ꞏ e 1 (mod (n))
e.g. n = 11 ꞏ 13 = 143, e = 7

(n) = 10 ꞏ 12 = 120 e-1 = 103(n) = 10 12 = 120, e = 103

 Solving square root of y modulo n is difficult!!!
2 (d)y 　 x2 (mod n)

8

RSA and Rabin FunctionRSA and Rabin Function
 Solving e-th root of y modulo n is difficult!!!

T bl H d

y 　 xe (mod n), where gcd(e, 　(n)) = 1
Why don’t we take (e-1)-th power of y?

h 1 1 (d ()) Trouble: How do we
know (n) ?

where e-1 ꞏ e 1 (mod (n))
e.g. n = 11 ꞏ 13 = 143, e = 7

(n) = 10 ꞏ 12 = 120 e-1 = 103(n) = 10 12 = 120, e = 103

 Solving square root of y modulo n is difficult!!!
2 (d)y 　 x2 (mod n)

Why don’t we take (2-1)-th power of y?

8

RSA and Rabin FunctionRSA and Rabin Function
 Solving e-th root of y modulo n is difficult!!!

T bl H d

y 　 xe (mod n), where gcd(e, 　(n)) = 1
Why don’t we take (e-1)-th power of y?

h 1 1 (d ()) Trouble: How do we
know (n) ?

where e-1 ꞏ e 1 (mod (n))
e.g. n = 11 ꞏ 13 = 143, e = 7

(n) = 10 ꞏ 12 = 120 e-1 = 103(n) = 10 12 = 120, e = 103

 Solving square root of y modulo n is difficult!!!
2 (d)y 　 x2 (mod n)

Why don’t we take (2-1)-th power of y?
where 2-1 ꞏ 2 1 (mod (n))where 2 1 ꞏ 2 1 (mod (n))

8

RSA and Rabin FunctionRSA and Rabin Function
 Solving e-th root of y modulo n is difficult!!!

T bl H d

y 　 xe (mod n), where gcd(e, 　(n)) = 1
Why don’t we take (e-1)-th power of y?

h 1 1 (d ()) Trouble: How do we
know (n) ?

where e-1 ꞏ e 1 (mod (n))
e.g. n = 11 ꞏ 13 = 143, e = 7

(n) = 10 ꞏ 12 = 120 e-1 = 103(n) = 10 12 = 120, e = 103

 Solving square root of y modulo n is difficult!!!
2 (d)y 　 x2 (mod n)

Why don’t we take (2-1)-th power of y?
where 2-1 ꞏ 2 1 (mod (n))where 2 1 ꞏ 2 1 (mod (n))
e.g. n = 11 ꞏ 13 = 143

8

RSA and Rabin FunctionRSA and Rabin Function
 Solving e-th root of y modulo n is difficult!!!

T bl H d

y 　 xe (mod n), where gcd(e, 　(n)) = 1
Why don’t we take (e-1)-th power of y?

h 1 1 (d ()) Trouble: How do we
know (n) ?

where e-1 ꞏ e 1 (mod (n))
e.g. n = 11 ꞏ 13 = 143, e = 7

(n) = 10 ꞏ 12 = 120 e-1 = 103(n) = 10 12 = 120, e = 103

 Solving square root of y modulo n is difficult!!!
2 (d)y 　 x2 (mod n)

Why don’t we take (2-1)-th power of y?
where 2-1 ꞏ 2 1 (mod (n))where 2 1 ꞏ 2 1 (mod (n))
e.g. n = 11 ꞏ 13 = 143

　(n) = 10 ꞏ 12 = 120, gcd(2, 　(n)) = 2

8

() , g (, ())

RSA and Rabin FunctionRSA and Rabin Function
 Solving e-th root of y modulo n is difficult!!!

T bl H d

y 　 xe (mod n), where gcd(e, 　(n)) = 1
Why don’t we take (e-1)-th power of y?

h 1 1 (d ()) Trouble: How do we
know (n) ?

where e-1 ꞏ e 1 (mod (n))
e.g. n = 11 ꞏ 13 = 143, e = 7

(n) = 10 ꞏ 12 = 120 e-1 = 103(n) = 10 12 = 120, e = 103

 Solving square root of y modulo n is difficult!!!
2 (d)y 　 x2 (mod n)

Why don’t we take (2-1)-th power of y?
where 2-1 ꞏ 2 1 (mod (n))where 2 1 ꞏ 2 1 (mod (n))
e.g. n = 11 ꞏ 13 = 143

　(n) = 10 ꞏ 12 = 120, gcd(2, 　(n)) = 2

8

() , g (, ())
Trouble: d ꞏ 2 　 1 (mod 　(n)) has no solution

RSA and Rabin FunctionRSA and Rabin Function
 Solving e-th root of y modulo n is difficult!!!

T bl H d

y 　 xe (mod n), where gcd(e, 　(n)) = 1
Why don’t we take (e-1)-th power of y?

h 1 1 (d ()) Trouble: How do we
know (n) ?

where e-1 ꞏ e 1 (mod (n))
e.g. n = 11 ꞏ 13 = 143, e = 7

(n) = 10 ꞏ 12 = 120 e-1 = 103(n) = 10 12 = 120, e = 103

 Solving square root of y modulo n is difficult!!!
2 (d)y 　 x2 (mod n)

Why don’t we take (2-1)-th power of y?
where 2-1 ꞏ 2 1 (mod (n))where 2 1 ꞏ 2 1 (mod (n))
e.g. n = 11 ꞏ 13 = 143

　(n) = 10 ꞏ 12 = 120, gcd(2, 　(n)) = 2

Remember solving square
root of y modulo a prime
number p is very easy

8

() , g (, ())
Trouble: d ꞏ 2 　 1 (mod 　(n)) has no solution

RSA Public Key CryptosystemRSA Public Key Cryptosystem
 R. Rivest, A. Shamir and L. Adleman, “A Method for R. Rivest, A. Shamir and L. Adleman, A Method for

Obtaining Digital Signatures and Public-Key
Cryptosystems,” Comm. ACM, pp.120-126, 1978Cryptosystems, Comm. ACM, pp.120 126, 1978

9

RSA Public Key CryptosystemRSA Public Key Cryptosystem
 R. Rivest, A. Shamir and L. Adleman, “A Method for R. Rivest, A. Shamir and L. Adleman, A Method for

Obtaining Digital Signatures and Public-Key
Cryptosystems,” Comm. ACM, pp.120-126, 1978Cryptosystems, Comm. ACM, pp.120 126, 1978

 Based on the Integer Factorization problem

9

RSA Public Key CryptosystemRSA Public Key Cryptosystem
 R. Rivest, A. Shamir and L. Adleman, “A Method for R. Rivest, A. Shamir and L. Adleman, A Method for

Obtaining Digital Signatures and Public-Key
Cryptosystems,” Comm. ACM, pp.120-126, 1978Cryptosystems, Comm. ACM, pp.120 126, 1978

 Based on the Integer Factorization problem
 Ch t l i b (k th t!!) Choose two large prime numbers: p, q (keep them secret!!)

9

RSA Public Key CryptosystemRSA Public Key Cryptosystem
 R. Rivest, A. Shamir and L. Adleman, “A Method for R. Rivest, A. Shamir and L. Adleman, A Method for

Obtaining Digital Signatures and Public-Key
Cryptosystems,” Comm. ACM, pp.120-126, 1978Cryptosystems, Comm. ACM, pp.120 126, 1978

 Based on the Integer Factorization problem
 Ch t l i b (k th t!!) Choose two large prime numbers: p, q (keep them secret!!)
 Calculate the modulus n = pꞏq (make it public)

9

RSA Public Key CryptosystemRSA Public Key Cryptosystem
 R. Rivest, A. Shamir and L. Adleman, “A Method for R. Rivest, A. Shamir and L. Adleman, A Method for

Obtaining Digital Signatures and Public-Key
Cryptosystems,” Comm. ACM, pp.120-126, 1978Cryptosystems, Comm. ACM, pp.120 126, 1978

 Based on the Integer Factorization problem
 Ch t l i b (k th t!!) Choose two large prime numbers: p, q (keep them secret!!)
 Calculate the modulus n = pꞏq (make it public)
 Calculate (n) = (p-1)ꞏ(q-1) (keep it secret)

9

RSA Public Key CryptosystemRSA Public Key Cryptosystem
 R. Rivest, A. Shamir and L. Adleman, “A Method for R. Rivest, A. Shamir and L. Adleman, A Method for

Obtaining Digital Signatures and Public-Key
Cryptosystems,” Comm. ACM, pp.120-126, 1978Cryptosystems, Comm. ACM, pp.120 126, 1978

 Based on the Integer Factorization problem
 Ch t l i b (k th t!!) Choose two large prime numbers: p, q (keep them secret!!)
 Calculate the modulus n = pꞏq (make it public)
 Calculate (n) = (p-1)ꞏ(q-1) (keep it secret)
 Select a random integer such that e < and gcd(e,) = 1g g (,)

9

RSA Public Key CryptosystemRSA Public Key Cryptosystem
 R. Rivest, A. Shamir and L. Adleman, “A Method for R. Rivest, A. Shamir and L. Adleman, A Method for

Obtaining Digital Signatures and Public-Key
Cryptosystems,” Comm. ACM, pp.120-126, 1978Cryptosystems, Comm. ACM, pp.120 126, 1978

 Based on the Integer Factorization problem
 Ch t l i b (k th t!!) Choose two large prime numbers: p, q (keep them secret!!)
 Calculate the modulus n = pꞏq (make it public)
 Calculate (n) = (p-1)ꞏ(q-1) (keep it secret)
 Select a random integer such that e < and gcd(e,) = 1g g (,)
 Calculate the unique integer d such that e ꞏ d 1 (mod)

9

RSA Public Key CryptosystemRSA Public Key Cryptosystem
 R. Rivest, A. Shamir and L. Adleman, “A Method for R. Rivest, A. Shamir and L. Adleman, A Method for

Obtaining Digital Signatures and Public-Key
Cryptosystems,” Comm. ACM, pp.120-126, 1978Cryptosystems, Comm. ACM, pp.120 126, 1978

 Based on the Integer Factorization problem
 Ch t l i b (k th t!!) Choose two large prime numbers: p, q (keep them secret!!)
 Calculate the modulus n = pꞏq (make it public)
 Calculate (n) = (p-1)ꞏ(q-1) (keep it secret)
 Select a random integer such that e < and gcd(e,) = 1g g (,)
 Calculate the unique integer d such that e ꞏ d 1 (mod)
 Public key: (n e) Private key: d

9

 Public key: (n, e) Private key: d

RSA Encryption & DecryptionRSA Encryption & Decryption
 Alice wants to encrypt a message m for Bob Alice wants to encrypt a message m for Bob

10

RSA Encryption & DecryptionRSA Encryption & Decryption
 Alice wants to encrypt a message m for Bob Alice wants to encrypt a message m for Bob
 Alice obtains Bob’s authentic public key (n, e)

10

RSA Encryption & DecryptionRSA Encryption & Decryption
 Alice wants to encrypt a message m for Bob Alice wants to encrypt a message m for Bob
 Alice obtains Bob’s authentic public key (n, e)

Ali t th i t i th Alice represents the message as an integer m in the
interval [0, n -1]

10

RSA Encryption & DecryptionRSA Encryption & Decryption
 Alice wants to encrypt a message m for Bob Alice wants to encrypt a message m for Bob
 Alice obtains Bob’s authentic public key (n, e)

Ali t th i t i th Alice represents the message as an integer m in the
interval [0, n -1]

 Alice computes the modular exponentiation
c me (mod n)()

10

RSA Encryption & DecryptionRSA Encryption & Decryption
 Alice wants to encrypt a message m for Bob Alice wants to encrypt a message m for Bob
 Alice obtains Bob’s authentic public key (n, e)

Ali t th i t i th Alice represents the message as an integer m in the
interval [0, n -1]

 Alice computes the modular exponentiation
c me (mod n)()

 Alice sends the ciphertext c to Bob

10

RSA Encryption & DecryptionRSA Encryption & Decryption
 Alice wants to encrypt a message m for Bob Alice wants to encrypt a message m for Bob
 Alice obtains Bob’s authentic public key (n, e)

Ali t th i t i th Alice represents the message as an integer m in the
interval [0, n -1]

 Alice computes the modular exponentiation
c me (mod n)()

 Alice sends the ciphertext c to Bob
B b d t ith hi i t k (d) Bob decrypts c with his private key (n, d)
by computing the modular exponentiation

d^
10

m cd (mod n)^

RSA Encryption & DecryptionRSA Encryption & Decryption
 Why does RSA work? Why does RSA work?

11

RSA Encryption & DecryptionRSA Encryption & Decryption
 Why does RSA work? Why does RSA work?

Fact 1: eꞏd 1 (mod) eꞏd = 1 + k

11

RSA Encryption & DecryptionRSA Encryption & Decryption
 Why does RSA work? Why does RSA work?

Fact 1: eꞏd 1 (mod) eꞏd = 1 + k
F t 2 d() 1 1 (d)Fact 2: m, gcd(m,n)=1, m 1 (mod n)

(by Euler’s theorem)

11

RSA Encryption & DecryptionRSA Encryption & Decryption
 Why does RSA work? Why does RSA work?

Fact 1: eꞏd 1 (mod) eꞏd = 1 + k
F t 2 d() 1 1 (d)Fact 2: m, gcd(m,n)=1, m 1 (mod n)

(by Euler’s theorem)
From Fact 2: m , gcd(m,n)=1,

11

RSA Encryption & DecryptionRSA Encryption & Decryption
 Why does RSA work? Why does RSA work?

Fact 1: eꞏd 1 (mod) eꞏd = 1 + k
F t 2 d() 1 1 (d)Fact 2: m, gcd(m,n)=1, m 1 (mod n)

(by Euler’s theorem)
From Fact 2: m , gcd(m,n)=1,

cd 　 med m1+k m1+k (p-1)(q-1) m (mod n)()

11

RSA Encryption & DecryptionRSA Encryption & Decryption
 Why does RSA work? Why does RSA work?

Fact 1: eꞏd 1 (mod) eꞏd = 1 + k
F t 2 d() 1 1 (d)Fact 2: m, gcd(m,n)=1, m 1 (mod n)

(by Euler’s theorem)
From Fact 2: m , gcd(m,n)=1,

cd 　 med m1+k m1+k (p-1)(q-1) m (mod n)()
note: 1. This only proves that for all m that are not multiples of p

or q can be recovered after RSA encryption and decryption.

11

RSA Encryption & DecryptionRSA Encryption & Decryption
 Why does RSA work? Why does RSA work?

Fact 1: eꞏd 1 (mod) eꞏd = 1 + k
F t 2 d() 1 1 (d)Fact 2: m, gcd(m,n)=1, m 1 (mod n)

(by Euler’s theorem)
From Fact 2: m , gcd(m,n)=1,

cd 　 med m1+k m1+k (p-1)(q-1) m (mod n)()
note: 1. This only proves that for all m that are not multiples of p

or q can be recovered after RSA encryption and decryption.
2. For those m that are multiples of p or q, the Euler’s theorem

simply does not hold because p 0 (mod p) and
 1 (d)

11

p 1 (mod q)
which means that p 1 (mod n) from CRT.

RSA Encryption & DecryptionRSA Encryption & Decryption
 Why does RSA work? Is this really a problem??? Why does RSA work?

Fact 1: eꞏd 1 (mod) eꞏd = 1 + k
F t 2 d() 1 1 (d)

y p

Fact 2: m, gcd(m,n)=1, m 1 (mod n)
(by Euler’s theorem)

From Fact 2: m , gcd(m,n)=1,
cd 　 med m1+k m1+k (p-1)(q-1) m (mod n)()

note: 1. This only proves that for all m that are not multiples of p
or q can be recovered after RSA encryption and decryption.

2. For those m that are multiples of p or q, the Euler’s theorem
simply does not hold because p 0 (mod p) and

 1 (d)

11

p 1 (mod q)
which means that p 1 (mod n) from CRT.

RSA Encryption & DecryptionRSA Encryption & Decryption
 Why does RSA work? Why does RSA work?

12

RSA Encryption & DecryptionRSA Encryption & Decryption
 Why does RSA work? Why does RSA work?

Fact 1: eꞏd 1 (mod) eꞏd = 1 + k

12

RSA Encryption & DecryptionRSA Encryption & Decryption
 Why does RSA work? Why does RSA work?

Fact 1: eꞏd 1 (mod) eꞏd = 1 + k
Fact 2: m, gcd(m,p)=1, m p-1 1 (mod p)

(by Fermat’s Little theorem)

12

RSA Encryption & DecryptionRSA Encryption & Decryption
 Why does RSA work? Why does RSA work?

Fact 1: eꞏd 1 (mod) eꞏd = 1 + k
Fact 2: m, gcd(m,p)=1, m p-1 1 (mod p)

(by Fermat’s Little theorem)
From Fact 2: m , gcd(m,p)=1

12

RSA Encryption & DecryptionRSA Encryption & Decryption
 Why does RSA work? Why does RSA work?

Fact 1: eꞏd 1 (mod) eꞏd = 1 + k
Fact 2: m, gcd(m,p)=1, m p-1 1 (mod p)

(by Fermat’s Little theorem)
From Fact 2: m , gcd(m,p)=1

m 1+k (p-1) (q-1) m (mod p)m (p) (q) m (mod p)

12

RSA Encryption & DecryptionRSA Encryption & Decryption
 Why does RSA work? Why does RSA work?

Fact 1: eꞏd 1 (mod) eꞏd = 1 + k
Fact 2: m, gcd(m,p)=1, m p-1 1 (mod p)

(by Fermat’s Little theorem)
From Fact 2: m , gcd(m,p)=1

m 1+k (p-1) (q-1) m (mod p)note: this equation is
trivially true when m (p) (q) m (mod p)trivially true when
m = kp

12

RSA Encryption & DecryptionRSA Encryption & Decryption
 Why does RSA work? Why does RSA work?

Fact 1: eꞏd 1 (mod) eꞏd = 1 + k
Fact 2: m, gcd(m,p)=1, m p-1 1 (mod p)

(by Fermat’s Little theorem)
From Fact 2: m , gcd(m,p)=1

m 1+k (p-1) (q-1) m (mod p)note: this equation is
trivially true when m (p) (q) m (mod p)
From Fact 2: m , gcd(m,q)=1

trivially true when
m = kp

12

RSA Encryption & DecryptionRSA Encryption & Decryption
 Why does RSA work? Why does RSA work?

Fact 1: eꞏd 1 (mod) eꞏd = 1 + k
Fact 2: m, gcd(m,p)=1, m p-1 1 (mod p)

(by Fermat’s Little theorem)
From Fact 2: m , gcd(m,p)=1

m 1+k (p-1) (q-1) m (mod p)note: this equation is
trivially true when m (p) (q) m (mod p)
From Fact 2: m , gcd(m,q)=1

1+k (1) (1)

trivially true when
m = kp

m 1+k (p-1) (q-1) m (mod q)

12

RSA Encryption & DecryptionRSA Encryption & Decryption
 Why does RSA work? Why does RSA work?

Fact 1: eꞏd 1 (mod) eꞏd = 1 + k
Fact 2: m, gcd(m,p)=1, m p-1 1 (mod p)

(by Fermat’s Little theorem)
From Fact 2: m , gcd(m,p)=1

m 1+k (p-1) (q-1) m (mod p)note: this equation is
trivially true when m (p) (q) m (mod p)
From Fact 2: m , gcd(m,q)=1

1+k (1) (1)

trivially true when
m = kp

note: this equation is
m 1+k (p-1) (q-1) m (mod q)

note: this equation is
trivially true when
m = kq

12

RSA Encryption & DecryptionRSA Encryption & Decryption
 Why does RSA work? Why does RSA work?

Fact 1: eꞏd 1 (mod) eꞏd = 1 + k
Fact 2: m, gcd(m,p)=1, m p-1 1 (mod p)

(by Fermat’s Little theorem)
From Fact 2: m , gcd(m,p)=1

m 1+k (p-1) (q-1) m (mod p)note: this equation is
trivially true when m (p) (q) m (mod p)
From Fact 2: m , gcd(m,q)=1

1+k (1) (1)

trivially true when
m = kp

note: this equation is
m 1+k (p-1) (q-1) m (mod q)

From CRT: m ,

note: this equation is
trivially true when
m = kq

12

RSA Encryption & DecryptionRSA Encryption & Decryption
 Why does RSA work? Why does RSA work?

Fact 1: eꞏd 1 (mod) eꞏd = 1 + k
Fact 2: m, gcd(m,p)=1, m p-1 1 (mod p)

(by Fermat’s Little theorem)
From Fact 2: m , gcd(m,p)=1

m 1+k (p-1) (q-1) m (mod p)note: this equation is
trivially true when m (p) (q) m (mod p)
From Fact 2: m , gcd(m,q)=1

1+k (1) (1)

trivially true when
m = kp

note: this equation is
m 1+k (p-1) (q-1) m (mod q)

From CRT: m ,

note: this equation is
trivially true when
m = kq

12

cd 　 med 　 m1+k m1+k (p-1)(q-1) 　 m (mod n)

RSA Encryption & DecryptionRSA Encryption & Decryption
 Why does RSA work? Why does RSA work?

Fact 1: eꞏd 1 (mod) eꞏd = 1 + k
Fact 2: m, gcd(m,p)=1, m p-1 1 (mod p)

(by Fermat’s Little theorem)
From Fact 2: m , gcd(m,p)=1

m 1+k (p-1) (q-1) m (mod p)note: this equation is
trivially true when m (p) (q) m (mod p)
From Fact 2: m , gcd(m,q)=1

1+k (1) (1)

trivially true when
m = kp

note: this equation is
m 1+k (p-1) (q-1) m (mod q)

From CRT: m ,

note: this equation is
trivially true when
m = kq

12

cd 　 med 　 m1+k m1+k (p-1)(q-1) 　 m (mod n)

RSA Function is a PermutationRSA Function is a Permutation
 RSA function is a permutation: (1-1 and onto, bijective)

13

RSA Function is a PermutationRSA Function is a Permutation
 RSA function is a permutation: (1-1 and onto, bijective)
 Goal: “x1, x2 Zn if x1

e x2
e (mod n) then x1 = x2”

13

RSA Function is a PermutationRSA Function is a Permutation
 RSA function is a permutation: (1-1 and onto, bijective)
 Goal: “x1, x2 Zn if x1

e x2
e (mod n) then x1 = x2”

xrꞏp, xp-1 1 (mod p), xsꞏq, xq-1 1 (mod q)xr p, x 1 (mod p), xs q, x 1 (mod q)

13

RSA Function is a PermutationRSA Function is a Permutation
 RSA function is a permutation: (1-1 and onto, bijective)
 Goal: “x1, x2 Zn if x1

e x2
e (mod n) then x1 = x2”

xrꞏp, xp-1 1 (mod p), xsꞏq, xq-1 1 (mod q)xr p, x 1 (mod p), xs q, x 1 (mod q)
k,xrꞏp, xk(n) 1 (mod p),xsꞏq, xk(n) 1 (mod q)

13

RSA Function is a PermutationRSA Function is a Permutation
 RSA function is a permutation: (1-1 and onto, bijective)
 Goal: “x1, x2 Zn if x1

e x2
e (mod n) then x1 = x2”

xrꞏp, xp-1 1 (mod p), xsꞏq, xq-1 1 (mod q)xr p, x 1 (mod p), xs q, x 1 (mod q)
k,xrꞏp, xk(n) 1 (mod p),xsꞏq, xk(n) 1 (mod q)
k x xk(n)+1 x (mod p) xk(n)+1 x (mod q)k,x, x () x (mod p), x () x (mod q)

13

RSA Function is a PermutationRSA Function is a Permutation
 RSA function is a permutation: (1-1 and onto, bijective)
 Goal: “x1, x2 Zn if x1

e x2
e (mod n) then x1 = x2”

xrꞏp, xp-1 1 (mod p), xsꞏq, xq-1 1 (mod q)xr p, x 1 (mod p), xs q, x 1 (mod q)
k,xrꞏp, xk(n) 1 (mod p),xsꞏq, xk(n) 1 (mod q)
k x xk(n)+1 x (mod p) xk(n)+1 x (mod q)CRT k,x, x () x (mod p), x () x (mod q)
k,x, xk(n)+1 x (mod n)

13

RSA Function is a PermutationRSA Function is a Permutation
 RSA function is a permutation: (1-1 and onto, bijective)
 Goal: “x1, x2 Zn if x1

e x2
e (mod n) then x1 = x2”

xrꞏp, xp-1 1 (mod p), xsꞏq, xq-1 1 (mod q)xr p, x 1 (mod p), xs q, x 1 (mod q)
k,xrꞏp, xk(n) 1 (mod p),xsꞏq, xk(n) 1 (mod q)
k x xk(n)+1 x (mod p) xk(n)+1 x (mod q)CRT k,x, x () x (mod p), x () x (mod q)
k,x, xk(n)+1 x (mod n)
 gcd(e (n))=1 inverse of e (mod (n)) exists gcd(e,(n))=1 inverse of e (mod (n)) exists

 let d be the inverse s.t. eꞏd 1 (mod (n))

13

RSA Function is a PermutationRSA Function is a Permutation
 RSA function is a permutation: (1-1 and onto, bijective)
 Goal: “x1, x2 Zn if x1

e x2
e (mod n) then x1 = x2”

xrꞏp, xp-1 1 (mod p), xsꞏq, xq-1 1 (mod q)xr p, x 1 (mod p), xs q, x 1 (mod q)
k,xrꞏp, xk(n) 1 (mod p),xsꞏq, xk(n) 1 (mod q)
k x xk(n)+1 x (mod p) xk(n)+1 x (mod q)CRT k,x, x () x (mod p), x () x (mod q)
k,x, xk(n)+1 x (mod n)
 gcd(e (n))=1 inverse of e (mod (n)) exists gcd(e,(n))=1 inverse of e (mod (n)) exists

 let d be the inverse s.t. eꞏd 1 (mod (n))
 x1, x2Z if x1

e x2
e (mod n) x1, x2 Zn if x1 x2 (mod n)

13

RSA Function is a PermutationRSA Function is a Permutation
 RSA function is a permutation: (1-1 and onto, bijective)
 Goal: “x1, x2 Zn if x1

e x2
e (mod n) then x1 = x2”

xrꞏp, xp-1 1 (mod p), xsꞏq, xq-1 1 (mod q)xr p, x 1 (mod p), xs q, x 1 (mod q)
k,xrꞏp, xk(n) 1 (mod p),xsꞏq, xk(n) 1 (mod q)
k x xk(n)+1 x (mod p) xk(n)+1 x (mod q)CRT k,x, x () x (mod p), x () x (mod q)
k,x, xk(n)+1 x (mod n)
 gcd(e (n))=1 inverse of e (mod (n)) exists gcd(e,(n))=1 inverse of e (mod (n)) exists

 let d be the inverse s.t. eꞏd 1 (mod (n))
 x1, x2Z if x1

e x2
e (mod n) x1, x2 Zn if x1 x2 (mod n)

 (x1
e)d (x2

e)d (mod n)

13

RSA Function is a PermutationRSA Function is a Permutation
 RSA function is a permutation: (1-1 and onto, bijective)
 Goal: “x1, x2 Zn if x1

e x2
e (mod n) then x1 = x2”

xrꞏp, xp-1 1 (mod p), xsꞏq, xq-1 1 (mod q)xr p, x 1 (mod p), xs q, x 1 (mod q)
k,xrꞏp, xk(n) 1 (mod p),xsꞏq, xk(n) 1 (mod q)
k x xk(n)+1 x (mod p) xk(n)+1 x (mod q)CRT k,x, x () x (mod p), x () x (mod q)
k,x, xk(n)+1 x (mod n)
 gcd(e (n))=1 inverse of e (mod (n)) exists gcd(e,(n))=1 inverse of e (mod (n)) exists

 let d be the inverse s.t. eꞏd 1 (mod (n))
 x1, x2Z if x1

e x2
e (mod n) x1, x2 Zn if x1 x2 (mod n)

 (x1
e)d (x2

e)d (mod n)
 (x)1+k (n) (x)1+k (n) (mod n)

13

 (x1)1+k (n) (x2)1+k (n) (mod n)

RSA Function is a PermutationRSA Function is a Permutation
 RSA function is a permutation: (1-1 and onto, bijective)
 Goal: “x1, x2 Zn if x1

e x2
e (mod n) then x1 = x2”

xrꞏp, xp-1 1 (mod p), xsꞏq, xq-1 1 (mod q)xr p, x 1 (mod p), xs q, x 1 (mod q)
k,xrꞏp, xk(n) 1 (mod p),xsꞏq, xk(n) 1 (mod q)
k x xk(n)+1 x (mod p) xk(n)+1 x (mod q)CRT k,x, x () x (mod p), x () x (mod q)
k,x, xk(n)+1 x (mod n)
 gcd(e (n))=1 inverse of e (mod (n)) exists gcd(e,(n))=1 inverse of e (mod (n)) exists

 let d be the inverse s.t. eꞏd 1 (mod (n))
 x1, x2Z if x1

e x2
e (mod n) x1, x2 Zn if x1 x2 (mod n)

 (x1
e)d (x2

e)d (mod n)
 (x)1+k (n) (x)1+k (n) (mod n)

13

 (x1)1+k (n) (x2)1+k (n) (mod n)
 x1 x2 (mod n)

RSA Function is a PermutationRSA Function is a Permutation
 RSA function is a permutation: (1-1 and onto, bijective)
 Goal: “x1, x2 Zn if x1

e x2
e (mod n) then x1 = x2”

xrꞏp, xp-1 1 (mod p), xsꞏq, xq-1 1 (mod q)xr p, x 1 (mod p), xs q, x 1 (mod q)
k,xrꞏp, xk(n) 1 (mod p),xsꞏq, xk(n) 1 (mod q)
k x xk(n)+1 x (mod p) xk(n)+1 x (mod q)CRT k,x, x () x (mod p), x () x (mod q)
k,x, xk(n)+1 x (mod n)
 gcd(e (n))=1 inverse of e (mod (n)) exists gcd(e,(n))=1 inverse of e (mod (n)) exists

 let d be the inverse s.t. eꞏd 1 (mod (n))
 x1, x2Z if x1

e x2
e (mod n) x1, x2 Zn if x1 x2 (mod n)

 (x1
e)d (x2

e)d (mod n)
 (x)1+k (n) (x)1+k (n) (mod n)

Note: Euler Thm is valid
only when x Z *

13

 (x1)1+k (n) (x2)1+k (n) (mod n)
 x1 x2 (mod n)

only when x Zn

RSA CryptosystemRSA Cryptosystem
 Most popular PKC in practice Most popular PKC in practice

14

RSA CryptosystemRSA Cryptosystem
 Most popular PKC in practice Most popular PKC in practice
 Tens of dedicated crypto-processors are specifically designed to

perform modular multiplication in a very efficient wayperform modular multiplication in a very efficient way.

14

RSA CryptosystemRSA Cryptosystem
 Most popular PKC in practice Most popular PKC in practice
 Tens of dedicated crypto-processors are specifically designed to

perform modular multiplication in a very efficient wayperform modular multiplication in a very efficient way.
 Disadvantage: long key length,

complex key generation schemecomplex key generation scheme,
deterministic encryption

14

RSA CryptosystemRSA Cryptosystem
 Most popular PKC in practice Most popular PKC in practice
 Tens of dedicated crypto-processors are specifically designed to

perform modular multiplication in a very efficient wayperform modular multiplication in a very efficient way.
 Disadvantage: long key length,

complex key generation schemecomplex key generation scheme,
deterministic encryption

 For acceptable level of security in commercial applications, 1024-p y pp ,
bit (300 digits) keys are used. For a symmetric key system with
comparable security, about 100 bits keys are used.

14

RSA CryptosystemRSA Cryptosystem
 Most popular PKC in practice Most popular PKC in practice
 Tens of dedicated crypto-processors are specifically designed to

perform modular multiplication in a very efficient wayperform modular multiplication in a very efficient way.
 Disadvantage: long key length,

complex key generation schemecomplex key generation scheme,
deterministic encryption

 For acceptable level of security in commercial applications, 1024-p y pp ,
bit (300 digits) keys are used. For a symmetric key system with
comparable security, about 100 bits keys are used.

 In constrained devices such as smart cards, cellular phones and
PDAs, it is hard to store, communicate keys or handle operations
i l i l i t

14

involving large integers

Matlab examplesMatlab examples
 rsatest m rsatest.m

15

Matlab examplesMatlab examples
 rsatest m rsatest.m

maple('p := nextprime(1897345789)')

15

Matlab examplesMatlab examples
 rsatest m rsatest.m

maple('p := nextprime(1897345789)')
maple('q := nextprime(278478934897)')

15

Matlab examplesMatlab examples
 rsatest m rsatest.m

maple('p := nextprime(1897345789)')
maple('q := nextprime(278478934897)')
maple('n := p*q');

15

Matlab examplesMatlab examples
 rsatest m rsatest.m

maple('p := nextprime(1897345789)')
maple('q := nextprime(278478934897)')
maple('n := p*q');
maple('x := 101');

15

Matlab examplesMatlab examples
 rsatest m rsatest.m

maple('p := nextprime(1897345789)')
maple('q := nextprime(278478934897)')
maple('n := p*q');
maple('x := 101');
maple('e := nextprime(12345678)')maple(e : nextprime(12345678))

15

Matlab examplesMatlab examples
 rsatest m rsatest.m

maple('p := nextprime(1897345789)')
maple('q := nextprime(278478934897)')
maple('n := p*q'); Very likely to be relatively

maple('x := 101');
maple('e := nextprime(12345678)')

y y y
prime with (p-1)(q-1)

maple(e : nextprime(12345678))

15

Matlab examplesMatlab examples
 rsatest m rsatest.m

maple('p := nextprime(1897345789)')
maple('q := nextprime(278478934897)')
maple('n := p*q'); Very likely to be relatively

maple('x := 101');
maple('e := nextprime(12345678)')

y y y
prime with (p-1)(q-1)

maple(e : nextprime(12345678))
maple('d := e&^(-1) mod ((p-1)*(q-1))')

15

Matlab examplesMatlab examples
 rsatest m rsatest.m

maple('p := nextprime(1897345789)')
maple('q := nextprime(278478934897)')
maple('n := p*q'); Very likely to be relatively

maple('x := 101');
maple('e := nextprime(12345678)')

y y y
prime with (p-1)(q-1)

maple(e : nextprime(12345678))
maple('d := e&^(-1) mod ((p-1)*(q-1))')

 extended Euclidean algo.

15

g

Matlab examplesMatlab examples
 rsatest m rsatest.m

maple('p := nextprime(1897345789)')
maple('q := nextprime(278478934897)')
maple('n := p*q'); Very likely to be relatively

maple('x := 101');
maple('e := nextprime(12345678)')

y y y
prime with (p-1)(q-1)

maple(e : nextprime(12345678))
maple('d := e&^(-1) mod ((p-1)*(q-1))')
maple('y := x&^(e) mod n')
 extended Euclidean algo.

15

g

Matlab examplesMatlab examples
 rsatest m rsatest.m

maple('p := nextprime(1897345789)')
maple('q := nextprime(278478934897)')
maple('n := p*q'); Very likely to be relatively

maple('x := 101');
maple('e := nextprime(12345678)')

y y y
prime with (p-1)(q-1)

maple(e : nextprime(12345678))
maple('d := e&^(-1) mod ((p-1)*(q-1))')
maple('y := x&^(e) mod n')
maple('xp := y&^(d) mod n') extended Euclidean algo.

15

g

Rabin Cryptosystem (1/3)Rabin Cryptosystem (1/3)
M O R bi “Di it li d Si t d P bli k M.O. Rabin, “Digitalized Signatures and Public-key
Functions As Intractable As Factorization”, Tech. Rep.
LCS/TR212 MIT 1979LCS/TR212, MIT, 1979

16

Rabin Cryptosystem (1/3)Rabin Cryptosystem (1/3)
M O R bi “Di it li d Si t d P bli k M.O. Rabin, “Digitalized Signatures and Public-key
Functions As Intractable As Factorization”, Tech. Rep.
LCS/TR212 MIT 1979LCS/TR212, MIT, 1979

 Choose two large prime numbers: p, q (keep them secret!!)

16

Rabin Cryptosystem (1/3)Rabin Cryptosystem (1/3)
M O R bi “Di it li d Si t d P bli k M.O. Rabin, “Digitalized Signatures and Public-key
Functions As Intractable As Factorization”, Tech. Rep.
LCS/TR212 MIT 1979LCS/TR212, MIT, 1979

 Choose two large prime numbers: p, q (keep them secret!!)

 Calculate the modulus n p q (k it bli) Calculate the modulus n = pꞏq (make it public)

16

Rabin Cryptosystem (1/3)Rabin Cryptosystem (1/3)
M O R bi “Di it li d Si t d P bli k M.O. Rabin, “Digitalized Signatures and Public-key
Functions As Intractable As Factorization”, Tech. Rep.
LCS/TR212 MIT 1979LCS/TR212, MIT, 1979

 Choose two large prime numbers: p, q (keep them secret!!)

 Calculate the modulus n p q (k it bli) Calculate the modulus n = pꞏq (make it public)

 Public Key n

16

Rabin Cryptosystem (1/3)Rabin Cryptosystem (1/3)
M O R bi “Di it li d Si t d P bli k M.O. Rabin, “Digitalized Signatures and Public-key
Functions As Intractable As Factorization”, Tech. Rep.
LCS/TR212 MIT 1979LCS/TR212, MIT, 1979

 Choose two large prime numbers: p, q (keep them secret!!)

 Calculate the modulus n p q (k it bli) Calculate the modulus n = pꞏq (make it public)

 Public Key n
 Private Key p, q

16

Rabin Cryptosystem (2/3)Rabin Cryptosystem (2/3)
 Alice want to encrypt a message m (with some fixed

format) for Bob

17

Rabin Cryptosystem (2/3)Rabin Cryptosystem (2/3)
 Alice want to encrypt a message m (with some fixed

format) for Bob
 Alice obtains Bob’s authentic public key n

17

Rabin Cryptosystem (2/3)Rabin Cryptosystem (2/3)
 Alice want to encrypt a message m (with some fixed

format) for Bob
 Alice obtains Bob’s authentic public key n
 Alice represents the message as an integer m in the

interval [0, n -1]

17

Rabin Cryptosystem (2/3)Rabin Cryptosystem (2/3)
 Alice want to encrypt a message m (with some fixed

format) for Bob
 Alice obtains Bob’s authentic public key n
 Alice represents the message as an integer m in the

interval [0, n -1]
Ali t th d l Alice computes the modular square

c m2 (mod n)

17

Rabin Cryptosystem (2/3)Rabin Cryptosystem (2/3)
 Alice want to encrypt a message m (with some fixed

format) for Bob
 Alice obtains Bob’s authentic public key n
 Alice represents the message as an integer m in the

interval [0, n -1]
Ali t th d l Alice computes the modular square

c m2 (mod n)
 Alice sends the ciphertext c to Bob Alice sends the ciphertext c to Bob

17

Rabin Cryptosystem (2/3)Rabin Cryptosystem (2/3)
 Alice want to encrypt a message m (with some fixed

format) for Bob
 Alice obtains Bob’s authentic public key n
 Alice represents the message as an integer m in the

interval [0, n -1]
Ali t th d l Alice computes the modular square

c m2 (mod n)
 Alice sends the ciphertext c to Bob Alice sends the ciphertext c to Bob
 Bob decrypts c using his private key p and q

17

Rabin Cryptosystem (2/3)Rabin Cryptosystem (2/3)
 Alice want to encrypt a message m (with some fixed

format) for Bob
 Alice obtains Bob’s authentic public key n
 Alice represents the message as an integer m in the

interval [0, n -1]
Ali t th d l Alice computes the modular square

c m2 (mod n)
 Alice sends the ciphertext c to Bob Alice sends the ciphertext c to Bob
 Bob decrypts c using his private key p and q

B b t th f t i CRT Bob computes the four square roots m1, m2 using CRT,
one of them satisfying the fixed message format is the

d

17

recovered message

Rabin Cryptosystem (3/3)Rabin Cryptosystem (3/3)
 The range of the Rabin function is not the whole The range of the Rabin function is not the whole

set of Zn
* (compare with RSA).

18

Rabin Cryptosystem (3/3)Rabin Cryptosystem (3/3)
 The range of the Rabin function is not the whole The range of the Rabin function is not the whole

set of Zn
* (compare with RSA).

 The range covers all the quadratic residues (for a prime The range covers all the quadratic residues. (for a prime
modulus, the number of quadratic residues in Zp

* is
(p-1)/2; for a composite integer n=pꞏq, the number of quadratic (p) ; p g p q, q
residues in Zn

* is (p-1)(q-1)/4)

18

Rabin Cryptosystem (3/3)Rabin Cryptosystem (3/3)
 The range of the Rabin function is not the whole The range of the Rabin function is not the whole

set of Zn
* (compare with RSA).

 The range covers all the quadratic residues (for a prime The range covers all the quadratic residues. (for a prime
modulus, the number of quadratic residues in Zp

* is
(p-1)/2; for a composite integer n=pꞏq, the number of quadratic (p) ; p g p q, q
residues in Zn

* is (p-1)(q-1)/4)
 In order to let the Rabin function have inverse, it is necessary y

to make the Rabin function a permutation, ie. 1-1 and onto.
Therefore, the number of elements in the domain of the Rabin
f ti h ld l b (1)(1)/4 f Th 4function should also be (p-1)(q-1)/4 for n=pꞏq. There are 4
possible numbers with their square equal to y, and we have to
make 3 of them illegal

18

make 3 of them illegal.

Number of Quadratic ResiduesNumber of Quadratic Residues
 For a prime modulus p: number of QRp’s in Zp

* is (p-1)/2
f fi d i iti t l t { 2 4 p 1} QR ’pf: find a primitive g, at least {g2, g4, … gp-1} are QRp’s

assume there are (p+1)/2 QRs,
since there are exactly two square roots of a QR modulo py q Q p
there are p+1 square roots for these (p+1)/2 QRs, i.e. there must
be at least two pairs of square roots are the same (pigeon-hole),
i e two out of these (p+1)/2 QRs are the same contradictioni.e. two out of these (p+1)/2 QRs are the same, contradiction

19

Number of Quadratic ResiduesNumber of Quadratic Residues
 For a prime modulus p: number of QRp’s in Zp

* is (p-1)/2
f fi d i iti t l t { 2 4 p 1} QR ’pf: find a primitive g, at least {g2, g4, … gp-1} are QRp’s

assume there are (p+1)/2 QRs,
since there are exactly two square roots of a QR modulo py q Q p
there are p+1 square roots for these (p+1)/2 QRs, i.e. there must
be at least two pairs of square roots are the same (pigeon-hole),
i e two out of these (p+1)/2 QRs are the same contradictioni.e. two out of these (p+1)/2 QRs are the same, contradiction

 For a composite modulus pꞏq: number of QRn’s in Zpꞏq
* is (p-1)(q-1)/4

pf: find a common primitive in Z * and Z * g at least {g2 g4pf: find a common primitive in Zp and Zq g, at least {g , g , …,
gp-1 …, gq-1 …, g(n)} are QRn’s, where (n) = lcm(p-1,q-1) can be
as large as (p-1)(q-1)/2, this set has (p-1)(q-1)/4 distinct elements
assume there are (p-1)(q-1)/4+1 QRn’s in Zn

*, since there are four
square roots of a QR modulo pꞏq, these QRn’s have (p-1)(q-1)+4

t i t t l Th t b t d l t i

19

square roots in total. There must be some repeated elements in
this QRn, therefore, there are at most (p-1)(q-1)/4 QRn’s in Zn

*

Matlab examplesMatlab examples
 maple('p:= nextprime(189734535789)') % 189734535811 = 4 k + 3

20

Matlab examplesMatlab examples
 maple('p:= nextprime(189734535789)') % 189734535811 = 4 k + 3
 maple('p mod 4') maple(p mod 4)

20

Matlab examplesMatlab examples
 maple('p:= nextprime(189734535789)') % 189734535811 = 4 k + 3
 maple('p mod 4') maple(p mod 4)
 maple('q:= nextprime(27847815934897)') % 27847815934931 = 4 k + 3

20

Matlab examplesMatlab examples
 maple('p:= nextprime(189734535789)') % 189734535811 = 4 k + 3
 maple('p mod 4') maple(p mod 4)
 maple('q:= nextprime(27847815934897)') % 27847815934931 = 4 k + 3
 maple('q mod 4')

20

Matlab examplesMatlab examples
 maple('p:= nextprime(189734535789)') % 189734535811 = 4 k + 3
 maple('p mod 4') maple(p mod 4)
 maple('q:= nextprime(27847815934897)') % 27847815934931 = 4 k + 3
 maple('q mod 4')
 maple('n:=p*q'); maple(n: p q);

20

Matlab examplesMatlab examples
 maple('p:= nextprime(189734535789)') % 189734535811 = 4 k + 3
 maple('p mod 4') maple(p mod 4)
 maple('q:= nextprime(27847815934897)') % 27847815934931 = 4 k + 3
 maple('q mod 4')
 maple('n:=p*q'); maple(n: p q);
 maple('x:=070411111422141711030000') % text2int(‘helloworld’)

20

Matlab examplesMatlab examples
 maple('p:= nextprime(189734535789)') % 189734535811 = 4 k + 3
 maple('p mod 4') maple(p mod 4)
 maple('q:= nextprime(27847815934897)') % 27847815934931 = 4 k + 3
 maple('q mod 4')
 maple('n:=p*q'); maple(n: p q);
 maple('x:=070411111422141711030000') % text2int(‘helloworld’)
 maple('c:= x&^2 mod n')

20

Matlab examplesMatlab examples
 maple('p:= nextprime(189734535789)') % 189734535811 = 4 k + 3
 maple('p mod 4') maple(p mod 4)
 maple('q:= nextprime(27847815934897)') % 27847815934931 = 4 k + 3
 maple('q mod 4')
 maple('n:=p*q'); maple(n: p q);
 maple('x:=070411111422141711030000') % text2int(‘helloworld’)
 maple('c:= x&^2 mod n')

 maple('c1:= c mod p')

20

Matlab examplesMatlab examples
 maple('p:= nextprime(189734535789)') % 189734535811 = 4 k + 3
 maple('p mod 4') maple(p mod 4)
 maple('q:= nextprime(27847815934897)') % 27847815934931 = 4 k + 3
 maple('q mod 4')
 maple('n:=p*q'); maple(n: p q);
 maple('x:=070411111422141711030000') % text2int(‘helloworld’)
 maple('c:= x&^2 mod n')

 maple('c1:= c mod p')
 maple('r1:= c1&^((p+1)/4) mod p') % maple('r1&^2 mod p')

20

Matlab examplesMatlab examples
 maple('p:= nextprime(189734535789)') % 189734535811 = 4 k + 3
 maple('p mod 4') maple(p mod 4)
 maple('q:= nextprime(27847815934897)') % 27847815934931 = 4 k + 3
 maple('q mod 4')
 maple('n:=p*q'); maple(n: p q);
 maple('x:=070411111422141711030000') % text2int(‘helloworld’)
 maple('c:= x&^2 mod n')

 maple('c1:= c mod p')
 maple('r1:= c1&^((p+1)/4) mod p') % maple('r1&^2 mod p')

 maple('c2:= c mod q')

20

Matlab examplesMatlab examples
 maple('p:= nextprime(189734535789)') % 189734535811 = 4 k + 3
 maple('p mod 4') maple(p mod 4)
 maple('q:= nextprime(27847815934897)') % 27847815934931 = 4 k + 3
 maple('q mod 4')
 maple('n:=p*q'); maple(n: p q);
 maple('x:=070411111422141711030000') % text2int(‘helloworld’)
 maple('c:= x&^2 mod n')

 maple('c1:= c mod p')
 maple('r1:= c1&^((p+1)/4) mod p') % maple('r1&^2 mod p')

 maple('c2:= c mod q')
 maple('r2:= c2&^((q+1)/4) mod q') % maple('r2&^2 mod q')

20

Matlab examplesMatlab examples
 maple('p:= nextprime(189734535789)') % 189734535811 = 4 k + 3
 maple('p mod 4') maple(p mod 4)
 maple('q:= nextprime(27847815934897)') % 27847815934931 = 4 k + 3
 maple('q mod 4')
 maple('n:=p*q'); maple(n: p q);
 maple('x:=070411111422141711030000') % text2int(‘helloworld’)
 maple('c:= x&^2 mod n')

 maple('c1:= c mod p')
 maple('r1:= c1&^((p+1)/4) mod p') % maple('r1&^2 mod p')

 maple('c2:= c mod q')
 maple('r2:= c2&^((q+1)/4) mod q') % maple('r2&^2 mod q')

 maple('m1:= chrem([r1, r2], [p, q])') % 3704440302544264662351219

20

Matlab examplesMatlab examples
 maple('p:= nextprime(189734535789)') % 189734535811 = 4 k + 3
 maple('p mod 4') maple(p mod 4)
 maple('q:= nextprime(27847815934897)') % 27847815934931 = 4 k + 3
 maple('q mod 4')
 maple('n:=p*q'); maple(n: p q);
 maple('x:=070411111422141711030000') % text2int(‘helloworld’)
 maple('c:= x&^2 mod n')

 maple('c1:= c mod p')
 maple('r1:= c1&^((p+1)/4) mod p') % maple('r1&^2 mod p')

 maple('c2:= c mod q')
 maple('r2:= c2&^((q+1)/4) mod q') % maple('r2&^2 mod q')

 maple('m1:= chrem([r1, r2], [p, q])') % 3704440302544264662351219
 maple('m2:= chrem([-r1, r2], [p, q])') % 70411111422141711030000

20

Matlab examplesMatlab examples
 maple('p:= nextprime(189734535789)') % 189734535811 = 4 k + 3
 maple('p mod 4') maple(p mod 4)
 maple('q:= nextprime(27847815934897)') % 27847815934931 = 4 k + 3
 maple('q mod 4')
 maple('n:=p*q'); maple(n: p q);
 maple('x:=070411111422141711030000') % text2int(‘helloworld’)
 maple('c:= x&^2 mod n')

 maple('c1:= c mod p')
 maple('r1:= c1&^((p+1)/4) mod p') % maple('r1&^2 mod p')

 maple('c2:= c mod q')
 maple('r2:= c2&^((q+1)/4) mod q') % maple('r2&^2 mod q')

 maple('m1:= chrem([r1, r2], [p, q])') % 3704440302544264662351219
 maple('m2:= chrem([-r1, r2], [p, q])') % 70411111422141711030000

20

 maple('m3:= chrem([r1, -r2], [p, q])') % 5213281318342160554284041

Matlab examplesMatlab examples
 maple('p:= nextprime(189734535789)') % 189734535811 = 4 k + 3
 maple('p mod 4') maple(p mod 4)
 maple('q:= nextprime(27847815934897)') % 27847815934931 = 4 k + 3
 maple('q mod 4')
 maple('n:=p*q'); maple(n: p q);
 maple('x:=070411111422141711030000') % text2int(‘helloworld’)
 maple('c:= x&^2 mod n')

 maple('c1:= c mod p')
 maple('r1:= c1&^((p+1)/4) mod p') % maple('r1&^2 mod p')

 maple('c2:= c mod q')
 maple('r2:= c2&^((q+1)/4) mod q') % maple('r2&^2 mod q')

 maple('m1:= chrem([r1, r2], [p, q])') % 3704440302544264662351219
 maple('m2:= chrem([-r1, r2], [p, q])') % 70411111422141711030000

20

 maple('m3:= chrem([r1, -r2], [p, q])') % 5213281318342160554284041
 maple('m4:= chrem([-r1, -r2], [p, q])') % 1579252127220037602962822

Security of the RSA FunctionSecurity of the RSA Function
B k RSA ‘i ti RSA f ti Break RSA means ‘inverting RSA function
without knowing the trapdoor’

21

Security of the RSA FunctionSecurity of the RSA Function
B k RSA ‘i ti RSA f ti Break RSA means ‘inverting RSA function
without knowing the trapdoor’ y xe (mod n)

21

Security of the RSA FunctionSecurity of the RSA Function
B k RSA ‘i ti RSA f ti Break RSA means ‘inverting RSA function
without knowing the trapdoor’ y xe (mod n)

 Factor the modulus Break RSA

21

Security of the RSA FunctionSecurity of the RSA Function
B k RSA ‘i ti RSA f ti Break RSA means ‘inverting RSA function
without knowing the trapdoor’ y xe (mod n)

 Factor the modulus Break RSA
 If we can factor the modulus we can break RSA If we can factor the modulus, we can break RSA

21

Security of the RSA FunctionSecurity of the RSA Function
B k RSA ‘i ti RSA f ti Break RSA means ‘inverting RSA function
without knowing the trapdoor’ y xe (mod n)

 Factor the modulus Break RSA
 If we can factor the modulus we can break RSA If we can factor the modulus, we can break RSA
 If we can break RSA, we don’t know whether we can factor the

modulus open problem (with negative evidences)modulus…open problem (with negative evidences)

21

Security of the RSA FunctionSecurity of the RSA Function
B k RSA ‘i ti RSA f ti Break RSA means ‘inverting RSA function
without knowing the trapdoor’ y xe (mod n)

 Factor the modulus Break RSA
 If we can factor the modulus we can break RSA If we can factor the modulus, we can break RSA
 If we can break RSA, we don’t know whether we can factor the

modulus open problem (with negative evidences)modulus…open problem (with negative evidences)

 Factor the modulus Calculate private key d

21

Security of the RSA FunctionSecurity of the RSA Function
B k RSA ‘i ti RSA f ti Break RSA means ‘inverting RSA function
without knowing the trapdoor’ y xe (mod n)

 Factor the modulus Break RSA
 If we can factor the modulus we can break RSA If we can factor the modulus, we can break RSA
 If we can break RSA, we don’t know whether we can factor the

modulus open problem (with negative evidences)modulus…open problem (with negative evidences)

 Factor the modulus Calculate private key d
 If we can factor the modulus, we can calculate the private

exponent d (the trapdoor information).

21

Security of the RSA FunctionSecurity of the RSA Function
B k RSA ‘i ti RSA f ti Break RSA means ‘inverting RSA function
without knowing the trapdoor’ y xe (mod n)

 Factor the modulus Break RSA
 If we can factor the modulus we can break RSA If we can factor the modulus, we can break RSA
 If we can break RSA, we don’t know whether we can factor the

modulus open problem (with negative evidences)modulus…open problem (with negative evidences)

 Factor the modulus Calculate private key d
 If we can factor the modulus, we can calculate the private

exponent d (the trapdoor information).

21

 If we have the private exponent d, we can factor the modulus.

Security of the RSA FunctionSecurity of the RSA Function
B k RSA ‘i ti RSA f ti Break RSA means ‘inverting RSA function
without knowing the trapdoor’ y xe (mod n)

 Factor the modulus Break RSA
 If we can factor the modulus we can break RSA If we can factor the modulus, we can break RSA
 If we can break RSA, we don’t know whether we can factor the

modulus open problem (with negative evidences)modulus…open problem (with negative evidences)

 Factor the modulus Calculate private key d
 If we can factor the modulus, we can calculate the private

exponent d (the trapdoor information).

21
will be illustrated later after factorization

 If we have the private exponent d, we can factor the modulus.

Security of Rabin FunctionSecurity of Rabin Function
 Security of Rabin function is equivalent to

integer factoring

22

Security of Rabin FunctionSecurity of Rabin Function
 Security of Rabin function is equivalent to

integer factoring
 inverting ‘y f(x) x2 (mod n)’ without inverting y f(x) x2 (mod n) without

knowing p and q factoring n

22

Security of Rabin FunctionSecurity of Rabin Function
 Security of Rabin function is equivalent to

integer factoring
 inverting ‘y f(x) x2 (mod n)’ without inverting y f(x) x2 (mod n) without

knowing p and q factoring n
 • if you can factor n = p ꞏ q in polynomial time

• you can solve y x1
2 (mod p) and y x2

2 (mod q) easily

• using CRT you can find x which is f -1(y)

22

Security of Rabin FunctionSecurity of Rabin Function
 Security of Rabin function is equivalent to

integer factoring
 inverting ‘y f(x) x2 (mod n)’ without inverting y f(x) x2 (mod n) without

knowing p and q factoring n
 • if you can factor n = p ꞏ q in polynomial time

• you can solve y x1
2 (mod p) and y x2

2 (mod q) easily

• using CRT you can find x which is f -1(y)

• given a quadratic residue y if you can find the four
square roots x1 and x2 for y in polynomial time

f b i d() d d()

22

• you can factor n by trying gcd(x1-x2, n) and gcd(x1+x2, n)

Basic Factoring Principle (1/4)Basic Factoring Principle (1/4)
 Let n be an integer and suppose there exist integers x and y with g pp g y

x2 y2 (mod n), but x y (mod n). Then n is composite,
 both gcd(x-y, n) and gcd(x+y, n) are nontrivial factors of n.

23

Basic Factoring Principle (1/4)Basic Factoring Principle (1/4)
 Let n be an integer and suppose there exist integers x and y with g pp g y

x2 y2 (mod n), but x y (mod n). Then n is composite,
 both gcd(x-y, n) and gcd(x+y, n) are nontrivial factors of n.
Proof:

let d = gcd(x-y, n).

23

Basic Factoring Principle (1/4)Basic Factoring Principle (1/4)
 Let n be an integer and suppose there exist integers x and y with g pp g y

x2 y2 (mod n), but x y (mod n). Then n is composite,
 both gcd(x-y, n) and gcd(x+y, n) are nontrivial factors of n.
Proof:

let d = gcd(x-y, n).
C 1 d (d) di iCase 1: assume d = n x y (mod n) contradiction

23

Basic Factoring Principle (1/4)Basic Factoring Principle (1/4)
 Let n be an integer and suppose there exist integers x and y with g pp g y

x2 y2 (mod n), but x y (mod n). Then n is composite,
 both gcd(x-y, n) and gcd(x+y, n) are nontrivial factors of n.
Proof:

let d = gcd(x-y, n).
C 1 d (d) di iCase 1: assume d = n x y (mod n) contradiction
Case 2: assume d is 1 (the trivial factor)

23

Basic Factoring Principle (1/4)Basic Factoring Principle (1/4)
 Let n be an integer and suppose there exist integers x and y with g pp g y

x2 y2 (mod n), but x y (mod n). Then n is composite,
 both gcd(x-y, n) and gcd(x+y, n) are nontrivial factors of n.
Proof:

let d = gcd(x-y, n).
C 1 d (d) di iCase 1: assume d = n x y (mod n) contradiction
Case 2: assume d is 1 (the trivial factor)

x2 y2 (mod n) x2 y2 = (x y)(x+y) = k ꞏ nx2 y2 (mod n) x2 - y2 = (x-y)(x+y) = k ꞏ n

23

Basic Factoring Principle (1/4)Basic Factoring Principle (1/4)
 Let n be an integer and suppose there exist integers x and y with g pp g y

x2 y2 (mod n), but x y (mod n). Then n is composite,
 both gcd(x-y, n) and gcd(x+y, n) are nontrivial factors of n.
Proof:

let d = gcd(x-y, n).
C 1 d (d) di iCase 1: assume d = n x y (mod n) contradiction
Case 2: assume d is 1 (the trivial factor)

x2 y2 (mod n) x2 y2 = (x y)(x+y) = k ꞏ nx2 y2 (mod n) x2 - y2 = (x-y)(x+y) = k ꞏ n
d=1 means gcd(x-y, n)=1

23

Basic Factoring Principle (1/4)Basic Factoring Principle (1/4)
 Let n be an integer and suppose there exist integers x and y with g pp g y

x2 y2 (mod n), but x y (mod n). Then n is composite,
 both gcd(x-y, n) and gcd(x+y, n) are nontrivial factors of n.
Proof:

let d = gcd(x-y, n).
C 1 d (d) di iCase 1: assume d = n x y (mod n) contradiction
Case 2: assume d is 1 (the trivial factor)

x2 y2 (mod n) x2 y2 = (x y)(x+y) = k ꞏ nx2 y2 (mod n) x2 - y2 = (x-y)(x+y) = k ꞏ n
d=1 means gcd(x-y, n)=1
n | x+y x -y (mod n) contradiction| y y ()

23

Basic Factoring Principle (1/4)Basic Factoring Principle (1/4)
 Let n be an integer and suppose there exist integers x and y with g pp g y

x2 y2 (mod n), but x y (mod n). Then n is composite,
 both gcd(x-y, n) and gcd(x+y, n) are nontrivial factors of n.
Proof:

let d = gcd(x-y, n).
C 1 d (d) di iCase 1: assume d = n x y (mod n) contradiction
Case 2: assume d is 1 (the trivial factor)

x2 y2 (mod n) x2 y2 = (x y)(x+y) = k ꞏ nx2 y2 (mod n) x2 - y2 = (x-y)(x+y) = k ꞏ n
d=1 means gcd(x-y, n)=1
n | x+y x -y (mod n) contradiction| y y ()

Case 1 and 2 implies that 1 < d < n
i.e. d must be a nontrivial factor of n

23

Basic Factoring Principle (2/4)Basic Factoring Principle (2/4)
 x2 y2 (mod p) implies x y (mod p) since p | (x+y)(x-y)

implies p | (x+y) or p | (x-y),
i.e. x -y (mod p) or x y (mod p)

24

Basic Factoring Principle (2/4)Basic Factoring Principle (2/4)
 x2 y2 (mod p) implies x y (mod p) since p | (x+y)(x-y)

implies p | (x+y) or p | (x-y),
i.e. x -y (mod p) or x y (mod p)

2 2 x2 y2 (mod n)
pq | (x+y)(x-y) implies the following 4 possibilities

24

Basic Factoring Principle (2/4)Basic Factoring Principle (2/4)
 x2 y2 (mod p) implies x y (mod p) since p | (x+y)(x-y)

implies p | (x+y) or p | (x-y),
i.e. x -y (mod p) or x y (mod p)

2 2 x2 y2 (mod n)
pq | (x+y)(x-y) implies the following 4 possibilities
1 | () i (d)1. pq | (x+y) i.e. x -y (mod n)

24

Basic Factoring Principle (2/4)Basic Factoring Principle (2/4)
 x2 y2 (mod p) implies x y (mod p) since p | (x+y)(x-y)

implies p | (x+y) or p | (x-y),
i.e. x -y (mod p) or x y (mod p)

2 2 x2 y2 (mod n)
pq | (x+y)(x-y) implies the following 4 possibilities
1 | () i (d)1. pq | (x+y) i.e. x -y (mod n)
2. pq | (x-y) i.e. x y (mod n)

24

Basic Factoring Principle (2/4)Basic Factoring Principle (2/4)
 x2 y2 (mod p) implies x y (mod p) since p | (x+y)(x-y)

implies p | (x+y) or p | (x-y),
i.e. x -y (mod p) or x y (mod p)

2 2 x2 y2 (mod n)
pq | (x+y)(x-y) implies the following 4 possibilities
1 | () i (d)1. pq | (x+y) i.e. x -y (mod n)
2. pq | (x-y) i.e. x y (mod n)
3 p | (+) and q | () i e (mod p) and (mod q)3. p | (x+y) and q | (x-y) i.e. x -y (mod p) and x y (mod q)

24

Basic Factoring Principle (2/4)Basic Factoring Principle (2/4)
 x2 y2 (mod p) implies x y (mod p) since p | (x+y)(x-y)

implies p | (x+y) or p | (x-y),
i.e. x -y (mod p) or x y (mod p)

2 2 x2 y2 (mod n)
pq | (x+y)(x-y) implies the following 4 possibilities
1 | () i (d)1. pq | (x+y) i.e. x -y (mod n)
2. pq | (x-y) i.e. x y (mod n)
3 p | (+) and q | () i e (mod p) and (mod q)3. p | (x+y) and q | (x-y) i.e. x -y (mod p) and x y (mod q)
4. q | (x+y) and p | (x-y) i.e. x -y (mod q) and x y (mod p)

24

Basic Factoring Principle (2/4)Basic Factoring Principle (2/4)
 x2 y2 (mod p) implies x y (mod p) since p | (x+y)(x-y)

implies p | (x+y) or p | (x-y),
i.e. x -y (mod p) or x y (mod p)

2 2 x2 y2 (mod n)
pq | (x+y)(x-y) implies the following 4 possibilities
1 | () i (d)1. pq | (x+y) i.e. x -y (mod n)
2. pq | (x-y) i.e. x y (mod n)
3 p | (+) and q | () i e (mod p) and (mod q)3. p | (x+y) and q | (x-y) i.e. x -y (mod p) and x y (mod q)
4. q | (x+y) and p | (x-y) i.e. x -y (mod q) and x y (mod p)
 Case 1 and case 2 are useless for factorization Case 1 and case 2 are useless for factorization

24

Basic Factoring Principle (2/4)Basic Factoring Principle (2/4)
 x2 y2 (mod p) implies x y (mod p) since p | (x+y)(x-y)

implies p | (x+y) or p | (x-y),
i.e. x -y (mod p) or x y (mod p)

2 2 x2 y2 (mod n)
pq | (x+y)(x-y) implies the following 4 possibilities
1 | () i (d)1. pq | (x+y) i.e. x -y (mod n)
2. pq | (x-y) i.e. x y (mod n)
3 p | (+) and q | () i e (mod p) and (mod q)3. p | (x+y) and q | (x-y) i.e. x -y (mod p) and x y (mod q)
4. q | (x+y) and p | (x-y) i.e. x -y (mod q) and x y (mod p)
 Case 1 and case 2 are useless for factorization Case 1 and case 2 are useless for factorization
 Case 3 leads to the factorization of n, i.e. gcd(x+y, n) = p and

gcd(x-y, n) = q

24

g (y,) q

Basic Factoring Principle (2/4)Basic Factoring Principle (2/4)
 x2 y2 (mod p) implies x y (mod p) since p | (x+y)(x-y)

implies p | (x+y) or p | (x-y),
i.e. x -y (mod p) or x y (mod p)

2 2 x2 y2 (mod n)
pq | (x+y)(x-y) implies the following 4 possibilities
1 | () i (d)1. pq | (x+y) i.e. x -y (mod n)
2. pq | (x-y) i.e. x y (mod n)
3 p | (+) and q | () i e (mod p) and (mod q)3. p | (x+y) and q | (x-y) i.e. x -y (mod p) and x y (mod q)
4. q | (x+y) and p | (x-y) i.e. x -y (mod q) and x y (mod p)
 Case 1 and case 2 are useless for factorization Case 1 and case 2 are useless for factorization
 Case 3 leads to the factorization of n, i.e. gcd(x+y, n) = p and

gcd(x-y, n) = q

24

g (y,) q
 Case 4 leads to the factorization of n, i.e. gcd(x+y, n) = q and

gcd(x-y, n) = p

Basic Factoring Principle (3/4)Basic Factoring Principle (3/4)
 This principle is used in almost all factoring algorithms.p p f g g

25

Basic Factoring Principle (3/4)Basic Factoring Principle (3/4)
 This principle is used in almost all factoring algorithms.p p f g g
 Why is it working?

25

Basic Factoring Principle (3/4)Basic Factoring Principle (3/4)
 This principle is used in almost all factoring algorithms.p p f g g
 Why is it working?

 take n = pꞏq (p and q are prime) for example take n p q (p and q are prime) for example

25

Basic Factoring Principle (3/4)Basic Factoring Principle (3/4)
 This principle is used in almost all factoring algorithms.p p f g g
 Why is it working?

 take n = pꞏq (p and q are prime) for example take n p q (p and q are prime) for example
 x2 y2 (mod n) implies x2 y2 (mod p) and x2 y2 (mod q)

25

Basic Factoring Principle (3/4)Basic Factoring Principle (3/4)
 This principle is used in almost all factoring algorithms.p p f g g
 Why is it working?

 take n = pꞏq (p and q are prime) for example take n p q (p and q are prime) for example
 x2 y2 (mod n) implies x2 y2 (mod p) and x2 y2 (mod q)
 we know ‘x y (mod p) are the only solution to x2 y2 (mod p)’ we know x y (mod p) are the only solution to x2 y2 (mod p)

and ‘x y (mod q) are the only solution to x2 y2 (mod q)’

25

Basic Factoring Principle (3/4)Basic Factoring Principle (3/4)
 This principle is used in almost all factoring algorithms.p p f g g
 Why is it working?

 take n = pꞏq (p and q are prime) for example take n p q (p and q are prime) for example
 x2 y2 (mod n) implies x2 y2 (mod p) and x2 y2 (mod q)
 we know ‘x y (mod p) are the only solution to x2 y2 (mod p)’ we know x y (mod p) are the only solution to x2 y2 (mod p)

and ‘x y (mod q) are the only solution to x2 y2 (mod q)’
 therefore from CRT we know x2 y2 (mod n) has four solutions therefore, from CRT we know x2 y2 (mod n) has four solutions,

25

Basic Factoring Principle (3/4)Basic Factoring Principle (3/4)
 This principle is used in almost all factoring algorithms.p p f g g
 Why is it working?

 take n = pꞏq (p and q are prime) for example take n p q (p and q are prime) for example
 x2 y2 (mod n) implies x2 y2 (mod p) and x2 y2 (mod q)
 we know ‘x y (mod p) are the only solution to x2 y2 (mod p)’ we know x y (mod p) are the only solution to x2 y2 (mod p)

and ‘x y (mod q) are the only solution to x2 y2 (mod q)’
 therefore from CRT we know x2 y2 (mod n) has four solutions therefore, from CRT we know x2 y2 (mod n) has four solutions,

 x y (mod p) and x y (mod q) x y (mod n)

25

Basic Factoring Principle (3/4)Basic Factoring Principle (3/4)
 This principle is used in almost all factoring algorithms.p p f g g
 Why is it working?

 take n = pꞏq (p and q are prime) for example take n p q (p and q are prime) for example
 x2 y2 (mod n) implies x2 y2 (mod p) and x2 y2 (mod q)
 we know ‘x y (mod p) are the only solution to x2 y2 (mod p)’ we know x y (mod p) are the only solution to x2 y2 (mod p)

and ‘x y (mod q) are the only solution to x2 y2 (mod q)’
 therefore from CRT we know x2 y2 (mod n) has four solutions therefore, from CRT we know x2 y2 (mod n) has four solutions,

 x y (mod p) and x y (mod q) x y (mod n)
 x -y (mod p) and x -y (mod q) x -y (mod n)

25

Basic Factoring Principle (3/4)Basic Factoring Principle (3/4)
 This principle is used in almost all factoring algorithms.p p f g g
 Why is it working?

 take n = pꞏq (p and q are prime) for example take n p q (p and q are prime) for example
 x2 y2 (mod n) implies x2 y2 (mod p) and x2 y2 (mod q)
 we know ‘x y (mod p) are the only solution to x2 y2 (mod p)’ we know x y (mod p) are the only solution to x2 y2 (mod p)

and ‘x y (mod q) are the only solution to x2 y2 (mod q)’
 therefore from CRT we know x2 y2 (mod n) has four solutions therefore, from CRT we know x2 y2 (mod n) has four solutions,

 x y (mod p) and x y (mod q) x y (mod n)
 x -y (mod p) and x -y (mod q) x -y (mod n)
 x y (mod p) and x -y (mod q) x z (mod n)

25

Basic Factoring Principle (3/4)Basic Factoring Principle (3/4)
 This principle is used in almost all factoring algorithms.p p f g g
 Why is it working?

 take n = pꞏq (p and q are prime) for example take n p q (p and q are prime) for example
 x2 y2 (mod n) implies x2 y2 (mod p) and x2 y2 (mod q)
 we know ‘x y (mod p) are the only solution to x2 y2 (mod p)’ we know x y (mod p) are the only solution to x2 y2 (mod p)

and ‘x y (mod q) are the only solution to x2 y2 (mod q)’
 therefore from CRT we know x2 y2 (mod n) has four solutions therefore, from CRT we know x2 y2 (mod n) has four solutions,

 x y (mod p) and x y (mod q) x y (mod n)
 x -y (mod p) and x -y (mod q) x -y (mod n)
 x y (mod p) and x -y (mod q) x z (mod n)
 x -y (mod p) and x y (mod q) x -z (mod n)

25

Basic Factoring Principle (3/4)Basic Factoring Principle (3/4)
 This principle is used in almost all factoring algorithms.p p f g g
 Why is it working?

 take n = pꞏq (p and q are prime) for example take n p q (p and q are prime) for example
 x2 y2 (mod n) implies x2 y2 (mod p) and x2 y2 (mod q)
 we know ‘x y (mod p) are the only solution to x2 y2 (mod p)’ we know x y (mod p) are the only solution to x2 y2 (mod p)

and ‘x y (mod q) are the only solution to x2 y2 (mod q)’
 therefore from CRT we know x2 y2 (mod n) has four solutions therefore, from CRT we know x2 y2 (mod n) has four solutions,

 x y (mod p) and x y (mod q) x y (mod n)
 x -y (mod p) and x -y (mod q) x -y (mod n)
 x y (mod p) and x -y (mod q) x z (mod n)
 x -y (mod p) and x y (mod q) x -z (mod n)

 as long as e ha e (here) e can factor n into

25

 as long as we have z (where z y), we can factor n into
gcd(y-z, n) and gcd(y+z, n)

Basic Factoring Principle (4/4)Basic Factoring Principle (4/4)
E C id h f 4 (d 35) i Ex: Consider the roots of 4 (mod 35), i.e.

solving x from x2 4 (mod 35)

26

Basic Factoring Principle (4/4)Basic Factoring Principle (4/4)
E C id h f 4 (d 35) i Ex: Consider the roots of 4 (mod 35), i.e.

solving x from x2 4 (mod 35)
 try to take square root of both sides,

we find x = 2 or 12

26

Basic Factoring Principle (4/4)Basic Factoring Principle (4/4)
E C id h f 4 (d 35) i Ex: Consider the roots of 4 (mod 35), i.e.

solving x from x2 4 (mod 35)
 try to take square root of both sides,

we find x = 2 or 12
 i.e. 122 22 (mod 35), but 12 2 (mod 35)

26

Basic Factoring Principle (4/4)Basic Factoring Principle (4/4)
E C id h f 4 (d 35) i Ex: Consider the roots of 4 (mod 35), i.e.

solving x from x2 4 (mod 35)
 try to take square root of both sides,

we find x = 2 or 12
 i.e. 122 22 (mod 35), but 12 2 (mod 35)
 therefore 35 is composite therefore 35 is composite

26

Basic Factoring Principle (4/4)Basic Factoring Principle (4/4)
E C id h f 4 (d 35) i Ex: Consider the roots of 4 (mod 35), i.e.

solving x from x2 4 (mod 35)
 try to take square root of both sides,

we find x = 2 or 12
 i.e. 122 22 (mod 35), but 12 2 (mod 35)
 therefore 35 is composite therefore 35 is composite
 gcd(12-2, 35) = 5 is a nontrivial factor of 35

26

Basic Factoring Principle (4/4)Basic Factoring Principle (4/4)
E C id h f 4 (d 35) i Ex: Consider the roots of 4 (mod 35), i.e.

solving x from x2 4 (mod 35)
 try to take square root of both sides,

we find x = 2 or 12
 i.e. 122 22 (mod 35), but 12 2 (mod 35)
 therefore 35 is composite therefore 35 is composite
 gcd(12-2, 35) = 5 is a nontrivial factor of 35
 gcd(12+2, 35) = 7 is a nontrivial factor of 35

26

Miller Rabin TestMiller-Rabin Test
Is n a composite number?

27

Miller Rabin TestMiller-Rabin Test
L 1 b dd i 1 2k i h b i dd

Is n a composite number?
 Let n > 1 be odd, write n-1 = 2k ꞏ m with m being odd

27

Miller Rabin TestMiller-Rabin Test
L 1 b dd i 1 2k i h b i dd

Is n a composite number?
 Let n > 1 be odd, write n-1 = 2k ꞏ m with m being odd
 Choose a random integer a with 1 < a < n-1

27

Miller Rabin TestMiller-Rabin Test
L 1 b dd i 1 2k i h b i dd

Is n a composite number?
 Let n > 1 be odd, write n-1 = 2k ꞏ m with m being odd
 Choose a random integer a with 1 < a < n-1
 Compute b0 am (mod n) Compute b0 a (mod n)

if b0 1 (mod n), stop, n is probably prime

27

Miller Rabin TestMiller-Rabin Test
L 1 b dd i 1 2k i h b i dd

Is n a composite number?
 Let n > 1 be odd, write n-1 = 2k ꞏ m with m being odd
 Choose a random integer a with 1 < a < n-1
 Compute b0 am (mod n) Compute b0 a (mod n)

if b0 1 (mod n), stop, n is probably prime
 Compute b1 b0

2 (mod n)
if b 1 (d) t d(b 1) i f t fif b1 1 (mod n), stop, gcd(b0-1, n) is a factor of n
if b1 -1 (mod n), stop, n is probably prime

27

Miller Rabin TestMiller-Rabin Test
L 1 b dd i 1 2k i h b i dd

Is n a composite number?
 Let n > 1 be odd, write n-1 = 2k ꞏ m with m being odd
 Choose a random integer a with 1 < a < n-1
 Compute b0 am (mod n) Compute b0 a (mod n)

if b0 1 (mod n), stop, n is probably prime
 Compute b1 b0

2 (mod n)
if b 1 (d) t d(b 1) i f t fif b1 1 (mod n), stop, gcd(b0-1, n) is a factor of n
if b1 -1 (mod n), stop, n is probably prime

 Compute b2 b1
2 (mod n)p 2 1 ()

27

Miller Rabin TestMiller-Rabin Test
L 1 b dd i 1 2k i h b i dd

Is n a composite number?
 Let n > 1 be odd, write n-1 = 2k ꞏ m with m being odd
 Choose a random integer a with 1 < a < n-1
 Compute b0 am (mod n) Compute b0 a (mod n)

if b0 1 (mod n), stop, n is probably prime
 Compute b1 b0

2 (mod n)
if b 1 (d) t d(b 1) i f t fif b1 1 (mod n), stop, gcd(b0-1, n) is a factor of n
if b1 -1 (mod n), stop, n is probably prime

 Compute b2 b1
2 (mod n)p 2 1 ()

……..

27

Miller Rabin TestMiller-Rabin Test
L 1 b dd i 1 2k i h b i dd

Is n a composite number?
 Let n > 1 be odd, write n-1 = 2k ꞏ m with m being odd
 Choose a random integer a with 1 < a < n-1
 Compute b0 am (mod n) Compute b0 a (mod n)

if b0 1 (mod n), stop, n is probably prime
 Compute b1 b0

2 (mod n)
if b 1 (d) t d(b 1) i f t fif b1 1 (mod n), stop, gcd(b0-1, n) is a factor of n
if b1 -1 (mod n), stop, n is probably prime

 Compute b2 b1
2 (mod n)p 2 1 ()

……..
 Compute bk-1 bk-2

2 (mod n)
if b 1 (mod n) stop gcd(b -1 n) is a factor of nif bk-1 1 (mod n), stop, gcd(bk-2-1, n) is a factor of n
if bk-1 -1 (mod n), stop, n is probably prime

27

Miller Rabin TestMiller-Rabin Test
L 1 b dd i 1 2k i h b i dd

Is n a composite number?
 Let n > 1 be odd, write n-1 = 2k ꞏ m with m being odd
 Choose a random integer a with 1 < a < n-1
 Compute b0 am (mod n) Compute b0 a (mod n)

if b0 1 (mod n), stop, n is probably prime
 Compute b1 b0

2 (mod n)
if b 1 (d) t d(b 1) i f t fif b1 1 (mod n), stop, gcd(b0-1, n) is a factor of n
if b1 -1 (mod n), stop, n is probably prime

 Compute b2 b1
2 (mod n)p 2 1 ()

……..
 Compute bk-1 bk-2

2 (mod n)
if b 1 (mod n) stop gcd(b -1 n) is a factor of nif bk-1 1 (mod n), stop, gcd(bk-2-1, n) is a factor of n
if bk-1 -1 (mod n), stop, n is probably prime

 Compute bk bk-1
2 (mod n)

if b 1 (d) d(b 1) i f f

27

if bk 1 (mod n), stop, gcd(bk-1-1, n) is a factor of n
otherwise n is composite (Fermat Little Thm, bk an-1 (mod n))

Miller Rabin TestMiller-Rabin Test
L 1 b dd i 1 2k i h b i dd

Is n a composite number?
 Let n > 1 be odd, write n-1 = 2k ꞏ m with m being odd
 Choose a random integer a with 1 < a < n-1
 Compute b0 am (mod n)

n will pass Fermat test
n is called pseudo prime Compute b0 a (mod n)

if b0 1 (mod n), stop, n is probably prime
 Compute b1 b0

2 (mod n)
if b 1 (d) t d(b 1) i f t f

with respect to base a

if b1 1 (mod n), stop, gcd(b0-1, n) is a factor of n
if b1 -1 (mod n), stop, n is probably prime

 Compute b2 b1
2 (mod n)p 2 1 ()

……..
 Compute bk-1 bk-2

2 (mod n)
if b 1 (mod n) stop gcd(b -1 n) is a factor of nif bk-1 1 (mod n), stop, gcd(bk-2-1, n) is a factor of n
if bk-1 -1 (mod n), stop, n is probably prime

 Compute bk bk-1
2 (mod n)

if b 1 (d) d(b 1) i f f

27

if bk 1 (mod n), stop, gcd(bk-1-1, n) is a factor of n
otherwise n is composite (Fermat Little Thm, bk an-1 (mod n))

Miller Rabin Test IllustratedMiller-Rabin Test Illustrated
n-1 = 2k ꞏ m

28

Miller Rabin Test IllustratedMiller-Rabin Test Illustrated
n-1 = 2k ꞏ m

b0 am (mod n)

28

Miller Rabin Test IllustratedMiller-Rabin Test Illustrated
n-1 = 2k ꞏ m

b0 am (mod n)
b1 a2ꞏm (mod n)

28

Miller Rabin Test IllustratedMiller-Rabin Test Illustrated
n-1 = 2k ꞏ m

b0 am (mod n)
b1 a2ꞏm (mod n)

bk a2kꞏm an-1 (mod n)

…

28

Miller Rabin Test IllustratedMiller-Rabin Test Illustrated
n-1 = 2k ꞏ m

b0 am (mod n)
b1 a2ꞏm (mod n)

bk a2kꞏm an-1 (mod n)

…

Consider 4 possible cases:

28

Miller Rabin Test IllustratedMiller-Rabin Test Illustrated
n-1 = 2k ꞏ m

b0 am (mod n)
b1 a2ꞏm (mod n)

bk a2kꞏm an-1 (mod n)

…

Consider 4 possible cases:
 b0 1 (mod n)

ll b 1 (d) i 1 2 kall bi 1 (mod n), i=1,2,…k
there is no chance to use
Basic Factoring Principle abortBasic Factoring Principle, abort

28

Miller Rabin Test IllustratedMiller-Rabin Test Illustrated
n-1 = 2k ꞏ m

b0 am (mod n)
b1 a2ꞏm (mod n)

bk a2kꞏm an-1 (mod n)

…

Consider 4 possible cases:
 b0 1 (mod n)

ll b 1 (d) i 1 2 kall bi 1 (mod n), i=1,2,…k
there is no chance to use
Basic Factoring Principle abortBasic Factoring Principle, abort

 is not true,
bi-1 1 (mod n) and

28

i-1 ()
bi 1 (mod n), i=1,2,…k
Basic Factoring Principle applied, composite

Miller Rabin Test IllustratedMiller-Rabin Test Illustrated
 d

n-1 = 2k ꞏ m
 and are not true,

bi -1 (mod n), i=1,2,…k
all subsequent b 1 (mod n)

b0 am (mod n)
b1 a2ꞏm (mod n)

all subsequent bj 1 (mod n),
there is no chance to use
Basic Factoring Principle, abortbk a2kꞏm an-1 (mod n)

…

Consider 4 possible cases:
 b0 1 (mod n)

ll b 1 (d) i 1 2 k

g p

all bi 1 (mod n), i=1,2,…k
there is no chance to use
Basic Factoring Principle abortBasic Factoring Principle, abort

 is not true,
bi-1 1 (mod n) and

28

i-1 ()
bi 1 (mod n), i=1,2,…k
Basic Factoring Principle applied, composite

Miller Rabin Test IllustratedMiller-Rabin Test Illustrated
 d

n-1 = 2k ꞏ m
 and are not true,

bi -1 (mod n), i=1,2,…k
all subsequent b 1 (mod n)

b0 am (mod n)
b1 a2ꞏm (mod n)

all subsequent bj 1 (mod n),
there is no chance to use
Basic Factoring Principle, abortbk a2kꞏm an-1 (mod n)

…

Consider 4 possible cases:
 b0 1 (mod n)

ll b 1 (d) i 1 2 k

g p
, , and are not true,

bk an-1 (mod n)
all bi 1 (mod n), i=1,2,…k
there is no chance to use
Basic Factoring Principle abort

k

if bk 1 (mod n) n is composite
since if n is prime, bk 1 (mod n)Basic Factoring Principle, abort

 is not true,
bi-1 1 (mod n) and

(bk 1 (mod n) is covered by)

28

i-1 ()
bi 1 (mod n), i=1,2,…k
Basic Factoring Principle applied, composite

Uncoordinated BehaviorsUncoordinated Behaviors
 Speed of light changes as it moves fromp g g

one medium to another,

29

Uncoordinated BehaviorsUncoordinated Behaviors
 Speed of light changes as it moves fromp g g

one medium to another,
e g refraction caused by a prisme.g., refraction caused by a prism

29

Uncoordinated BehaviorsUncoordinated Behaviors
 Speed of light changes as it moves fromp g g

one medium to another,
e g refraction caused by a prisme.g., refraction caused by a prism

 趣味競賽: 兩人三腳, 同心協力, …

29

Uncoordinated BehaviorsUncoordinated Behaviors
 Speed of light changes as it moves fromp g g

one medium to another,
e g refraction caused by a prisme.g., refraction caused by a prism

 趣味競賽: 兩人三腳, 同心協力, …

 Squaring a number modulo a composite number (product Squaring a number modulo a composite number (product
of different prime numbers)

29

Uncoordinated BehaviorsUncoordinated Behaviors
 Speed of light changes as it moves fromp g g

one medium to another,
e g refraction caused by a prisme.g., refraction caused by a prism

 趣味競賽: 兩人三腳, 同心協力, …

 Squaring a number modulo a composite number (product Squaring a number modulo a composite number (product
of different prime numbers)

22 23 24 25 26 27 28

mod 11 4 8 5 10 9 7 3

29

mod 13 4 8 3 6 12 11 9

When/How does Basic Factoring
P i i l k i M R t t?Principle work in M-R test?

 When:
2

 When:
 explicitly: bi-1 ±1 (mod n) and bi bi-1 1 (mod n)

30

When/How does Basic Factoring
P i i l k i M R t t?Principle work in M-R test?

 When:

If i t i ti b n-1 (d) b t ft

2
 When:

 explicitly: bi-1 ±1 (mod n) and bi bi-1 1 (mod n)
If n is not prime, sometimes bk an-1 (mod n) but often
bk ar(n) (mod n) as in universal exponent factoring

30

When/How does Basic Factoring
P i i l k i M R t t?Principle work in M-R test?

 When:

If i t i ti b n-1 (d) b t ft

2
 When:

 explicitly: bi-1 ±1 (mod n) and bi bi-1 1 (mod n)
If n is not prime, sometimes bk an-1 (mod n) but often
bk ar(n) (mod n) as in universal exponent factoring

 How:

2 2

 How:
 implicitly: let p | n and q | n (p, q be two factors of n)

2 2bi-1 1 (mod p) and bi-1 1 (mod q)
but either bi-1 1 (mod p) or bi-1 1 (mod q)i 1 i 1

30

When/How does Basic Factoring
P i i l k i M R t t?Principle work in M-R test?

 When:

If i t i ti b n-1 (d) b t ft

2
 When:

 explicitly: bi-1 ±1 (mod n) and bi bi-1 1 (mod n)
If n is not prime, sometimes bk an-1 (mod n) but often
bk ar(n) (mod n) as in universal exponent factoring

 How:

2 2

 How:
 implicitly: let p | n and q | n (p, q be two factors of n)

2 2bi-1 1 (mod p) and bi-1 1 (mod q)
but either bi-1 1 (mod p) or bi-1 1 (mod q)

 catching the moment that b0, b1, … behave differently
while taking square in (mod p) component and (mod q)

i 1 i 1

30

while taking square in (mod p) component and (mod q)
component

Miller Rabin Test ExampleMiller-Rabin Test Example
 e.g. n = 561

4n-1 = 560 = 16 ꞏ 35 = 24 ꞏ 35

31

Miller Rabin Test ExampleMiller-Rabin Test Example
 e.g. n = 561

4n-1 = 560 = 16 ꞏ 35 = 24 ꞏ 35
let a = 2

31

Miller Rabin Test ExampleMiller-Rabin Test Example
 e.g. n = 561

4n-1 = 560 = 16 ꞏ 35 = 24 ꞏ 35
let a = 2
b0 235 263 (mod 561)

31

Miller Rabin Test ExampleMiller-Rabin Test Example
 e.g. n = 561

4n-1 = 560 = 16 ꞏ 35 = 24 ꞏ 35
let a = 2
b0 235 263 (mod 561)
b1 b0

2 2235 166 (mod 561)1 0 ()

31

Miller Rabin Test ExampleMiller-Rabin Test Example
 e.g. n = 561

4n-1 = 560 = 16 ꞏ 35 = 24 ꞏ 35
let a = 2
b0 235 263 (mod 561)
b1 b0

2 2235 166 (mod 561)1 0 ()
b2 b1

2 22235 67 (mod 561)

31

Miller Rabin Test ExampleMiller-Rabin Test Example
 e.g. n = 561

4n-1 = 560 = 16 ꞏ 35 = 24 ꞏ 35
let a = 2
b0 235 263 (mod 561)
b1 b0

2 2235 166 (mod 561)1 0 ()
b2 b1

2 22235 67 (mod 561)
b3 b2

2 22335 1 (mod 561)b3 b2 2 1 (mod 561)
561 is composite (3ꞏ11ꞏ17),

gcd(b2-1, 561) = 33 is a factor g (2 ,)

31

Miller Rabin Test ExampleMiller-Rabin Test Example
 e.g. n = 561

4n-1 = 560 = 16 ꞏ 35 = 24 ꞏ 35
let a = 2 mod 3 11 17

b0 235 263 (mod 561)
b1 b0

2 2235 166 (mod 561) 1 1 13
8102

1 0 ()
b2 b1

2 22235 67 (mod 561)
b3 b2

2 22335 1 (mod 561)

1 1 16
1 1 1b3 b2 2 1 (mod 561)

561 is composite (3ꞏ11ꞏ17),
gcd(b2-1, 561) = 33 is a factor ord17(2)=23g (2 ,)

17()

31

Miller Rabin Test ExampleMiller-Rabin Test Example
 e.g. n = 561

4n-1 = 560 = 16 ꞏ 35 = 24 ꞏ 35
let a = 2 mod 3 11 17

b0 235 263 (mod 561)
b1 b0

2 2235 166 (mod 561) 1 1 13
8102

1 0 ()
b2 b1

2 22235 67 (mod 561)
b3 b2

2 22335 1 (mod 561)

1 1 16
1 1 1b3 b2 2 1 (mod 561)

561 is composite (3ꞏ11ꞏ17),
gcd(b2-1, 561) = 33 is a factor ord17(2)=23g (2 ,)

Note: 3-1=2, 11-1=2ꞏ5, 17-1=24
17()

31

Miller Rabin Test ExampleMiller-Rabin Test Example
 e.g. n = 561

4n-1 = 560 = 16 ꞏ 35 = 24 ꞏ 35
let a = 2 mod 3 11 17

b0 235 263 (mod 561)
b1 b0

2 2235 166 (mod 561) 1 1 13
8102

1 0 ()
b2 b1

2 22235 67 (mod 561)
b3 b2

2 22335 1 (mod 561)

1 1 16
1 1 1b3 b2 2 1 (mod 561)

561 is composite (3ꞏ11ꞏ17),
gcd(b2-1, 561) = 33 is a factor ord17(2)=23g (2 ,)

Note: 3-1=2, 11-1=2ꞏ5, 17-1=24

(561) = 561(1-1/3)(1-1/11)(1-1/17)=2ꞏ10ꞏ16

17()

31

(561) 561(1 1/3)(1 1/11)(1 1/17) 2 10 16

Miller Rabin Test ExampleMiller-Rabin Test Example
 e.g. n = 561

4n-1 = 560 = 16 ꞏ 35 = 24 ꞏ 35
let a = 2 mod 3 11 17

b0 235 263 (mod 561)
b1 b0

2 2235 166 (mod 561) 1 1 13
8102

1 0 ()
b2 b1

2 22235 67 (mod 561)
b3 b2

2 22335 1 (mod 561)

1 1 16
1 1 1b3 b2 2 1 (mod 561)

561 is composite (3ꞏ11ꞏ17),
gcd(b2-1, 561) = 33 is a factor ord17(2)=23g (2 ,)

Note: 3-1=2, 11-1=2ꞏ5, 17-1=24

(561) = 561(1-1/3)(1-1/11)(1-1/17)=2ꞏ10ꞏ16

17()

31

(561) 561(1 1/3)(1 1/11)(1 1/17) 2 10 16
gcd((561), n-1)=80, ord561(2) | 80 in this case

Miller Rabin Test ExampleMiller-Rabin Test Example
 e.g. n = 561

4

A Carmichael number: pass
the Fermat test for all bases

n-1 = 560 = 16 ꞏ 35 = 24 ꞏ 35
let a = 2 mod 3 11 17

b0 235 263 (mod 561)
b1 b0

2 2235 166 (mod 561) 1 1 13
8102

1 0 ()
b2 b1

2 22235 67 (mod 561)
b3 b2

2 22335 1 (mod 561)

1 1 16
1 1 1b3 b2 2 1 (mod 561)

561 is composite (3ꞏ11ꞏ17),
gcd(b2-1, 561) = 33 is a factor ord17(2)=23g (2 ,)

Note: 3-1=2, 11-1=2ꞏ5, 17-1=24

(561) = 561(1-1/3)(1-1/11)(1-1/17)=2ꞏ10ꞏ16

17()

31

(561) 561(1 1/3)(1 1/11)(1 1/17) 2 10 16
gcd((561), n-1)=80, ord561(2) | 80 in this case

Pse do Prime and Strong Pse do PrimePseudo Prime and Strong Pseudo Prime
 If n is not a prime but satisfies an-1 1 (mod n) we If n is not a prime but satisfies a 1 (mod n) we

say that n is a pseudo prime number for base a.

32

Pse do Prime and Strong Pse do PrimePseudo Prime and Strong Pseudo Prime
 If n is not a prime but satisfies an-1 1 (mod n) we If n is not a prime but satisfies a 1 (mod n) we

say that n is a pseudo prime number for base a.
 2560 1 (d 561) e.g. 2560 1 (mod 561)

32

Pse do Prime and Strong Pse do PrimePseudo Prime and Strong Pseudo Prime
 If n is not a prime but satisfies an-1 1 (mod n) we If n is not a prime but satisfies a 1 (mod n) we

say that n is a pseudo prime number for base a.
 2560 1 (d 561) e.g. 2560 1 (mod 561)

 If n is not a prime but passes the Miller-Rabin test
with base a (without being identified as a
composite), we say that n is a strong pseudo primecomposite), we say that n is a strong pseudo prime
number for base a.

32

Pse do Prime and Strong Pse do PrimePseudo Prime and Strong Pseudo Prime
 If n is not a prime but satisfies an-1 1 (mod n) we If n is not a prime but satisfies a 1 (mod n) we

say that n is a pseudo prime number for base a.
 2560 1 (d 561) e.g. 2560 1 (mod 561)

 If n is not a prime but passes the Miller-Rabin test
with base a (without being identified as a
composite), we say that n is a strong pseudo primecomposite), we say that n is a strong pseudo prime
number for base a.
U t 1010 th 455052511 i th Up to 1010, there are 455052511 primes, there are
14884 pseudo prime numbers for the base 2, and

32

3291 strong pseudo prime numbers for the base 2

Fermat and Miller Rabin TestFermat and Miller-Rabin Test
 Both of these two tests are for identifying subsets of y g

composite numbers

I: integers

SPPa: strong pseudo prime
numbers for base a,

P: prime

I: integers the set of composite n
where M-T test says
‘probably prime’

SPPa

P: prime
numbers

C: composite
numbers

probably prime
PPa

I = P C numbers

PPa: pseudo prime
C = SPPa SPPa

= PP PP numbers for base a,
the set of composite
n where an-11(mod n)t i t

 PPa PPa

SPPa PPa

33

n where a 1(mod n): mysterious part
not prime, but cannot be identified as compositePPa SPPa C

Composite WitnessComposite Witness
 Note that the M-R test and probably together with the Lucas test

leave the strong pseudo prime number an extremely small set.

34

Composite WitnessComposite Witness
 Note that the M-R test and probably together with the Lucas test

leave the strong pseudo prime number an extremely small set.
 In other words, these tests are very close to a real ‘primality test’

separating prime numbers and composite numbersseparating prime numbers and composite numbers.

34

Composite WitnessComposite Witness
 Note that the M-R test and probably together with the Lucas test

leave the strong pseudo prime number an extremely small set.
 In other words, these tests are very close to a real ‘primality test’

separating prime numbers and composite numbersseparating prime numbers and composite numbers.
 If you have an RSA modulus n=pꞏq, you certainly can test it and

find out that it is actually a composite number.y p

34

Composite WitnessComposite Witness
 Note that the M-R test and probably together with the Lucas test

leave the strong pseudo prime number an extremely small set.
 In other words, these tests are very close to a real ‘primality test’

separating prime numbers and composite numbersseparating prime numbers and composite numbers.
 If you have an RSA modulus n=pꞏq, you certainly can test it and

find out that it is actually a composite number.y p
 However, these tests do not necessarily give you the factors of n in

order to tell you that n is a composite number. The factors of n, i.e.
t i l ki d f it b t th f t th t ip or q, are certainly a kind of witness about the fact that n is

composite.

34

Composite WitnessComposite Witness
 Note that the M-R test and probably together with the Lucas test

leave the strong pseudo prime number an extremely small set.
 In other words, these tests are very close to a real ‘primality test’

separating prime numbers and composite numbersseparating prime numbers and composite numbers.
 If you have an RSA modulus n=pꞏq, you certainly can test it and

find out that it is actually a composite number.y p
 However, these tests do not necessarily give you the factors of n in

order to tell you that n is a composite number. The factors of n, i.e.
t i l ki d f it b t th f t th t ip or q, are certainly a kind of witness about the fact that n is

composite.
 However there are other kind of witness that n is composite e g However, there are other kind of witness that n is composite, e.g.,

“2n-1 (mod n) does not equal to 1” is also a witness that n is
composite.

34

Composite WitnessComposite Witness
 Note that the M-R test and probably together with the Lucas test

leave the strong pseudo prime number an extremely small set.
 In other words, these tests are very close to a real ‘primality test’

separating prime numbers and composite numbersseparating prime numbers and composite numbers.
 If you have an RSA modulus n=pꞏq, you certainly can test it and

find out that it is actually a composite number.y p
 However, these tests do not necessarily give you the factors of n in

order to tell you that n is a composite number. The factors of n, i.e.
t i l ki d f it b t th f t th t ip or q, are certainly a kind of witness about the fact that n is

composite.
 However there are other kind of witness that n is composite e g However, there are other kind of witness that n is composite, e.g.,

“2n-1 (mod n) does not equal to 1” is also a witness that n is
composite.

34

 A composite number will be factored out by the M-R test only if it
is a pseudo prime but it is not a strong pseudo prime number.

Matlab ExampleMatlab Example
 primetest(n)

35

Matlab ExampleMatlab Example
 primetest(n)

 Miller-Rabin test for 30 randomly chosen base a

35

Matlab ExampleMatlab Example
 primetest(n)

 Miller-Rabin test for 30 randomly chosen base a
 output 0 if n is composite

35

Matlab ExampleMatlab Example
 primetest(n)

 Miller-Rabin test for 30 randomly chosen base a
 output 0 if n is composite
 output 1 if n is prime

35

Matlab ExampleMatlab Example
 primetest(n)

 Miller-Rabin test for 30 randomly chosen base a
 output 0 if n is composite
 output 1 if n is prime

 Matlab program can not be used for large n Matlab program can not be used for large n

35

Matlab ExampleMatlab Example
 primetest(n)

 Miller-Rabin test for 30 randomly chosen base a
 output 0 if n is composite
 output 1 if n is prime

 Matlab program can not be used for large n Matlab program can not be used for large n
 use Maple isprime(n), one strong pseudo-primality test and one

Lucas testLucas test

35

Matlab ExampleMatlab Example
 primetest(n)

 Miller-Rabin test for 30 randomly chosen base a
 output 0 if n is composite
 output 1 if n is prime

 Matlab program can not be used for large n Matlab program can not be used for large n
 use Maple isprime(n), one strong pseudo-primality test and one

Lucas testLucas test

 primetest(2563)
ans= 0ans 0

35

Matlab ExampleMatlab Example
 primetest(n)

 Miller-Rabin test for 30 randomly chosen base a
 output 0 if n is composite
 output 1 if n is prime

 Matlab program can not be used for large n Matlab program can not be used for large n
 use Maple isprime(n), one strong pseudo-primality test and one

Lucas testLucas test

 primetest(2563)
ans= 0ans 0

 factor(2563)
ans 11 233

35

ans = 11 233

QuestionsQuestions
 What is the probability that Miller-Rabin test fails???p y

36

QuestionsQuestions
 What is the probability that Miller-Rabin test fails???p y

 If n is a prime number, it will not be recognized as a composite
number

36

QuestionsQuestions
 What is the probability that Miller-Rabin test fails???p y

 If n is a prime number, it will not be recognized as a composite
number

 If n = p ꞏ q, but

36

QuestionsQuestions
 What is the probability that Miller-Rabin test fails???p y

 If n is a prime number, it will not be recognized as a composite
number

 If n = p ꞏ q, but
bk 　 an-1 1 (mod n) meets Fermat test (pseudo prime
number)number)

36

QuestionsQuestions
 What is the probability that Miller-Rabin test fails???p y

 If n is a prime number, it will not be recognized as a composite
number

 If n = p ꞏ q, but
bk 　 an-1 1 (mod n) meets Fermat test (pseudo prime
number)number)
0<ik bi 1 (mod n) and bi-1 -1 (mod n)

36

QuestionsQuestions
 What is the probability that Miller-Rabin test fails???p y

 If n is a prime number, it will not be recognized as a composite
number

 If n = p ꞏ q, but
bk 　 an-1 1 (mod n) meets Fermat test (pseudo prime
number)number)
0<ik bi 1 (mod n) and bi-1 -1 (mod n)

meets Miller-Rabin test (strong pseudo prime number)meets Miller Rabin test (strong pseudo prime number)

36

QuestionsQuestions
 What is the probability that Miller-Rabin test fails???p y

 If n is a prime number, it will not be recognized as a composite
number

 If n = p ꞏ q, but
bk 　 an-1 1 (mod n) meets Fermat test (pseudo prime
number)number)
0<ik bi 1 (mod n) and bi-1 -1 (mod n)

meets Miller-Rabin test (strong pseudo prime number)meets Miller Rabin test (strong pseudo prime number)
or bi 1 (mod n) 1 (mod p) 1 (mod q)

36

QuestionsQuestions
 What is the probability that Miller-Rabin test fails???p y

 If n is a prime number, it will not be recognized as a composite
number

 If n = p ꞏ q, but
bk 　 an-1 1 (mod n) meets Fermat test (pseudo prime
number)number)
0<ik bi 1 (mod n) and bi-1 -1 (mod n)

meets Miller-Rabin test (strong pseudo prime number)meets Miller Rabin test (strong pseudo prime number)
or bi 1 (mod n) 1 (mod p) 1 (mod q)

bi 1 -1 (mod n) -1 (mod p) -1 (mod q)i-1 () (p) (q)

36

QuestionsQuestions
 What is the probability that Miller-Rabin test fails???p y

 If n is a prime number, it will not be recognized as a composite
number

 If n = p ꞏ q, but
bk 　 an-1 1 (mod n) meets Fermat test (pseudo prime
number)number)
0<ik bi 1 (mod n) and bi-1 -1 (mod n)

meets Miller-Rabin test (strong pseudo prime number)meets Miller Rabin test (strong pseudo prime number)
or bi 1 (mod n) 1 (mod p) 1 (mod q)

bi 1 -1 (mod n) -1 (mod p) -1 (mod q)i-1 () (p) (q)

 Note: apq-1 1 (mod n)

36

QuestionsQuestions
 What is the probability that Miller-Rabin test fails???p y

 If n is a prime number, it will not be recognized as a composite
number

 If n = p ꞏ q, but
bk 　 an-1 1 (mod n) meets Fermat test (pseudo prime
number)number)
0<ik bi 1 (mod n) and bi-1 -1 (mod n)

meets Miller-Rabin test (strong pseudo prime number)meets Miller Rabin test (strong pseudo prime number)
or bi 1 (mod n) 1 (mod p) 1 (mod q)

bi 1 -1 (mod n) -1 (mod p) -1 (mod q)i-1 () (p) (q)

 Note: apq-1 1 (mod n)

36

a(p-1)(q-1) 1 (mod n)

QuestionsQuestions
 What is the probability that Miller-Rabin test fails???p y

 If n is a prime number, it will not be recognized as a composite
number

 If n = p ꞏ q, but
bk 　 an-1 1 (mod n) meets Fermat test (pseudo prime
number)number)
0<ik bi 1 (mod n) and bi-1 -1 (mod n)

meets Miller-Rabin test (strong pseudo prime number)meets Miller Rabin test (strong pseudo prime number)
or bi 1 (mod n) 1 (mod p) 1 (mod q)

bi 1 -1 (mod n) -1 (mod p) -1 (mod q)i-1 () (p) (q)

 Note: apq-1 1 (mod n)

36

a(p-1)(q-1) 1 (mod n)
alcm(p-1, q-1) 1 (mod n)

Note on Primality TestingNote on Primality Testing
 Primality testing is different from factoring Primality testing is different from factoring

37

Note on Primality TestingNote on Primality Testing
 Primality testing is different from factoring Primality testing is different from factoring

 Kind of interesting that we can tell something is composite
without being able to actually factor itwithout being able to actually factor it

37

Note on Primality TestingNote on Primality Testing
 Primality testing is different from factoring Primality testing is different from factoring

 Kind of interesting that we can tell something is composite
without being able to actually factor itwithout being able to actually factor it

 Recent result (2002) from IIT trio (Agrawal, Kayal, and
Saxena)Saxena)

37

Note on Primality TestingNote on Primality Testing
 Primality testing is different from factoring Primality testing is different from factoring

 Kind of interesting that we can tell something is composite
without being able to actually factor itwithout being able to actually factor it

 Recent result (2002) from IIT trio (Agrawal, Kayal, and
Saxena)Saxena)
 Recently it was shown that deterministic primality testing could

be done in polynomial timebe done in polynomial time

37

Note on Primality TestingNote on Primality Testing
 Primality testing is different from factoring Primality testing is different from factoring

 Kind of interesting that we can tell something is composite
without being able to actually factor itwithout being able to actually factor it

 Recent result (2002) from IIT trio (Agrawal, Kayal, and
Saxena)Saxena)
 Recently it was shown that deterministic primality testing could

be done in polynomial timebe done in polynomial time
 Complexity was like O(n12), though it’s been slightly reduced since then

37

Note on Primality TestingNote on Primality Testing
 Primality testing is different from factoring Primality testing is different from factoring

 Kind of interesting that we can tell something is composite
without being able to actually factor itwithout being able to actually factor it

 Recent result (2002) from IIT trio (Agrawal, Kayal, and
Saxena)Saxena)
 Recently it was shown that deterministic primality testing could

be done in polynomial timebe done in polynomial time
 Complexity was like O(n12), though it’s been slightly reduced since then

 Does this meant that RSA was broken? Does this meant that RSA was broken?

37

Note on Primality TestingNote on Primality Testing
 Primality testing is different from factoring Primality testing is different from factoring

 Kind of interesting that we can tell something is composite
without being able to actually factor itwithout being able to actually factor it

 Recent result (2002) from IIT trio (Agrawal, Kayal, and
Saxena)Saxena)
 Recently it was shown that deterministic primality testing could

be done in polynomial timebe done in polynomial time
 Complexity was like O(n12), though it’s been slightly reduced since then

 Does this meant that RSA was broken? Does this meant that RSA was broken?

 Randomized algorithms like Rabin-Miller are far more
efficient than the IIT algorithm so we’ll keep using those

37

efficient than the IIT algorithm, so we ll keep using those

Finding a Random PrimeFinding a Random Prime
 Find a prime of around 100 digits for cryptographic p g yp g p

usage

38

Finding a Random PrimeFinding a Random Prime
 Find a prime of around 100 digits for cryptographic p g yp g p

usage
 Prime number theorem ((x) x/ln(x)) asserts that the Prime number theorem ((x) x/ln(x)) asserts that the

density of primes around x is approximately 1/ln(x)

38

Finding a Random PrimeFinding a Random Prime
 Find a prime of around 100 digits for cryptographic p g yp g p

usage
 Prime number theorem ((x) x/ln(x)) asserts that the Prime number theorem ((x) x/ln(x)) asserts that the

density of primes around x is approximately 1/ln(x)
 x = 10100 1/ln(10100) = 1/230 x = 10100, 1/ln(10100) = 1/230

if we skip even numbers, the density is about 1/115

38

Finding a Random PrimeFinding a Random Prime
 Find a prime of around 100 digits for cryptographic p g yp g p

usage
 Prime number theorem ((x) x/ln(x)) asserts that the Prime number theorem ((x) x/ln(x)) asserts that the

density of primes around x is approximately 1/ln(x)
 x = 10100 1/ln(10100) = 1/230 x = 10100, 1/ln(10100) = 1/230

if we skip even numbers, the density is about 1/115
i k d t ti i t th t lti l f 2 pick a random starting point, throw out multiples of 2,

3, 5, 7, and use Miller-Rabin test to eliminate most of
th itthe composites.

38

Finding a Random PrimeFinding a Random Prime
 Find a prime of around 100 digits for cryptographic p g yp g p

usage
 Prime number theorem ((x) x/ln(x)) asserts that the Prime number theorem ((x) x/ln(x)) asserts that the

density of primes around x is approximately 1/ln(x)
 x = 10100 1/ln(10100) = 1/230 x = 10100, 1/ln(10100) = 1/230

if we skip even numbers, the density is about 1/115
i k d t ti i t th t lti l f 2 pick a random starting point, throw out multiples of 2,

3, 5, 7, and use Miller-Rabin test to eliminate most of
th itthe composites.

38

 maple('a:=nextprime(189734535789)')

FactoringFactoring
 General number field sieve (GNFS): fastest()

e
(1.923+O(1))(ln(n))1/3 (ln(ln(n)))2/3

39

FactoringFactoring
 General number field sieve (GNFS): fastest()

 Quadratic sieve (QS)
e
(1.923+O(1))(ln(n))1/3 (ln(ln(n)))2/3

 Quadratic sieve (QS)

39

FactoringFactoring
 General number field sieve (GNFS): fastest()

 Quadratic sieve (QS)
e
(1.923+O(1))(ln(n))1/3 (ln(ln(n)))2/3

 Quadratic sieve (QS)
 Elliptic curve method (ECM), Lenstra (1985)

39

FactoringFactoring
 General number field sieve (GNFS): fastest()

 Quadratic sieve (QS)
e
(1.923+O(1))(ln(n))1/3 (ln(ln(n)))2/3

 Quadratic sieve (QS)
 Elliptic curve method (ECM), Lenstra (1985)

P ll d’ M t C l l ith Pollard’s Monte Carlo algorithm

39

FactoringFactoring
 General number field sieve (GNFS): fastest()

 Quadratic sieve (QS)
e
(1.923+O(1))(ln(n))1/3 (ln(ln(n)))2/3

 Quadratic sieve (QS)
 Elliptic curve method (ECM), Lenstra (1985)

P ll d’ M t C l l ith Pollard’s Monte Carlo algorithm
 Continued fraction algorithm

39

FactoringFactoring
 General number field sieve (GNFS): fastest()

 Quadratic sieve (QS)
e
(1.923+O(1))(ln(n))1/3 (ln(ln(n)))2/3

 Quadratic sieve (QS)
 Elliptic curve method (ECM), Lenstra (1985)

P ll d’ M t C l l ith Pollard’s Monte Carlo algorithm
 Continued fraction algorithm
 Trial division, Fermat factorization

39

FactoringFactoring
 General number field sieve (GNFS): fastest()

 Quadratic sieve (QS)
e
(1.923+O(1))(ln(n))1/3 (ln(ln(n)))2/3

 Quadratic sieve (QS)
 Elliptic curve method (ECM), Lenstra (1985)

P ll d’ M t C l l ith Pollard’s Monte Carlo algorithm
 Continued fraction algorithm
 Trial division, Fermat factorization
 Pollard’s p-1 factoring (1974), Williams’s p+1 p g (), p

factoring (1982)

39

FactoringFactoring
 General number field sieve (GNFS): fastest()

 Quadratic sieve (QS)
e
(1.923+O(1))(ln(n))1/3 (ln(ln(n)))2/3

 Quadratic sieve (QS)
 Elliptic curve method (ECM), Lenstra (1985)

P ll d’ M t C l l ith Pollard’s Monte Carlo algorithm
 Continued fraction algorithm
 Trial division, Fermat factorization
 Pollard’s p-1 factoring (1974), Williams’s p+1 p g (), p

factoring (1982)
 Universal exponent factorization, exponent

39

p , p
factorization

Simple Factoring MethodsSimple Factoring Methods
 Trial division:

40

Simple Factoring MethodsSimple Factoring Methods
 Trial division:

 dividing an integer n by all primes p n ... too slow

40

Simple Factoring MethodsSimple Factoring Methods
 Trial division:

 dividing an integer n by all primes p n ... too slow
 Fermat factorization: Fermat factorization:

40

Simple Factoring MethodsSimple Factoring Methods
 Trial division:

 dividing an integer n by all primes p n ... too slow
 Fermat factorization: Fermat factorization:

 e.g. n = 295927 calculate n+12, n+22, n+32… until
finding a square i e x2 = n + y2 thereforefinding a square, i.e. x2 = n + y2, therefore,
n = (x+y) (x-y) … if n = pꞏq, it takes on average
|p-q|/2 steps too slow|p q|/2 steps … too slow

40

Simple Factoring MethodsSimple Factoring Methods
 Trial division:

 dividing an integer n by all primes p n ... too slow
 Fermat factorization: Fermat factorization:

 e.g. n = 295927 calculate n+12, n+22, n+32… until
finding a square i e x2 = n + y2 thereforefinding a square, i.e. x2 = n + y2, therefore,
n = (x+y) (x-y) … if n = pꞏq, it takes on average
|p-q|/2 steps too slow|p q|/2 steps … too slow

 in RSA or Rabin, avoid p, q with the same bit length
assume p>q, n+y2 =pꞏq+((p-q)/2)2=(p2 +2pq+q2)/4=((p+q)/2)2

, p, q g

40

Simple Factoring MethodsSimple Factoring Methods
 Trial division:

 dividing an integer n by all primes p n ... too slow
 Fermat factorization: Fermat factorization:

 e.g. n = 295927 calculate n+12, n+22, n+32… until
finding a square i e x2 = n + y2 thereforefinding a square, i.e. x2 = n + y2, therefore,
n = (x+y) (x-y) … if n = pꞏq, it takes on average
|p-q|/2 steps too slow|p q|/2 steps … too slow

 in RSA or Rabin, avoid p, q with the same bit length
assume p>q, n+y2 =pꞏq+((p-q)/2)2=(p2 +2pq+q2)/4=((p+q)/2)2

, p, q g

 By-product of Miller-Rabin primality test:

40

Simple Factoring MethodsSimple Factoring Methods
 Trial division:

 dividing an integer n by all primes p n ... too slow
 Fermat factorization: Fermat factorization:

 e.g. n = 295927 calculate n+12, n+22, n+32… until
finding a square i e x2 = n + y2 thereforefinding a square, i.e. x2 = n + y2, therefore,
n = (x+y) (x-y) … if n = pꞏq, it takes on average
|p-q|/2 steps too slow|p q|/2 steps … too slow

 in RSA or Rabin, avoid p, q with the same bit length
assume p>q, n+y2 =pꞏq+((p-q)/2)2=(p2 +2pq+q2)/4=((p+q)/2)2

, p, q g

 By-product of Miller-Rabin primality test:
if i d i d d i

40

 if n is a pseudoprime and not a strong pseudoprime,
Miller-Rabin test can factor it. about 10-6 chance

Universal Exponent FactorizationUniversal Exponent Factorization
 if we have an exponent r, s.t. ar 1 (mod n) for all a gcd(a,n)=1

41

Universal Exponent FactorizationUniversal Exponent Factorization
 if we have an exponent r, s.t. ar 1 (mod n) for all a gcd(a,n)=1
 write r = 2k ꞏ m with m odd

41

Universal Exponent FactorizationUniversal Exponent Factorization
 if we have an exponent r, s.t. ar 1 (mod n) for all a gcd(a,n)=1
 write r = 2k ꞏ m with m odd

r must be even since we can
take a-1 (-1)r 1 (mod n)
requires r being even

requires r being even

41

Universal Exponent FactorizationUniversal Exponent Factorization
 if we have an exponent r, s.t. ar 1 (mod n) for all a gcd(a,n)=1
 write r = 2k ꞏ m with m odd
 choose a random a, 1<a<n-1

r must be even since we can
take a-1 (-1)r 1 (mod n)
requires r being even

requires r being even

41

Universal Exponent FactorizationUniversal Exponent Factorization
 if we have an exponent r, s.t. ar 1 (mod n) for all a gcd(a,n)=1
 write r = 2k ꞏ m with m odd
 choose a random a, 1<a<n-1

r must be even since we can
take a-1 (-1)r 1 (mod n)
requires r being even

requires r being even

a1 do not work

41

Universal Exponent FactorizationUniversal Exponent Factorization
 if we have an exponent r, s.t. ar 1 (mod n) for all a gcd(a,n)=1
 write r = 2k ꞏ m with m odd
 choose a random a, 1<a<n-1

r must be even since we can
take a-1 (-1)r 1 (mod n)
requires r being even

 if gcd(a, n) 1, we have a factor

requires r being even

a1 do not work

41

Universal Exponent FactorizationUniversal Exponent Factorization
 if we have an exponent r, s.t. ar 1 (mod n) for all a gcd(a,n)=1
 write r = 2k ꞏ m with m odd
 choose a random a, 1<a<n-1

r must be even since we can
take a-1 (-1)r 1 (mod n)
requires r being even

 if gcd(a, n) 1, we have a factor
 else

requires r being even

a1 do not work

41

Universal Exponent FactorizationUniversal Exponent Factorization
 if we have an exponent r, s.t. ar 1 (mod n) for all a gcd(a,n)=1
 write r = 2k ꞏ m with m odd
 choose a random a, 1<a<n-1

r must be even since we can
take a-1 (-1)r 1 (mod n)
requires r being even

 if gcd(a, n) 1, we have a factor
 else

l b m (d) if b h h

requires r being even

a1 do not work
 let b0 am (mod n), if b0 1 stop, choose another a

41

Universal Exponent FactorizationUniversal Exponent Factorization
 if we have an exponent r, s.t. ar 1 (mod n) for all a gcd(a,n)=1
 write r = 2k ꞏ m with m odd
 choose a random a, 1<a<n-1

r must be even since we can
take a-1 (-1)r 1 (mod n)
requires r being even

 if gcd(a, n) 1, we have a factor
 else

l b m (d) if b h h

requires r being even

a1 do not work
 let b0 am (mod n), if b0 1 stop, choose another a
 compute bu+1 bu

2 (mod n) for 0 u k-1,

41

Universal Exponent FactorizationUniversal Exponent Factorization
 if we have an exponent r, s.t. ar 1 (mod n) for all a gcd(a,n)=1
 write r = 2k ꞏ m with m odd
 choose a random a, 1<a<n-1

r must be even since we can
take a-1 (-1)r 1 (mod n)
requires r being even

 if gcd(a, n) 1, we have a factor
 else

l b m (d) if b h h

requires r being even

a1 do not work
 let b0 am (mod n), if b0 1 stop, choose another a
 compute bu+1 bu

2 (mod n) for 0 u k-1,
 if bu+1 -1, stop, choose another au+1 , p,

41

Universal Exponent FactorizationUniversal Exponent Factorization
 if we have an exponent r, s.t. ar 1 (mod n) for all a gcd(a,n)=1
 write r = 2k ꞏ m with m odd
 choose a random a, 1<a<n-1

r must be even since we can
take a-1 (-1)r 1 (mod n)
requires r being even

 if gcd(a, n) 1, we have a factor
 else

l b m (d) if b h h

requires r being even

a1 do not work
 let b0 am (mod n), if b0 1 stop, choose another a
 compute bu+1 bu

2 (mod n) for 0 u k-1,
 if bu+1 -1, stop, choose another au+1 , p,
 if bu+1 1 then gcd(bu-1, n) is a factor (basic factoring principle)

41

Universal Exponent FactorizationUniversal Exponent Factorization
 if we have an exponent r, s.t. ar 1 (mod n) for all a gcd(a,n)=1
 write r = 2k ꞏ m with m odd
 choose a random a, 1<a<n-1

r must be even since we can
take a-1 (-1)r 1 (mod n)
requires r being even

 if gcd(a, n) 1, we have a factor
 else

l b m (d) if b h h

requires r being even

a1 do not work
 let b0 am (mod n), if b0 1 stop, choose another a
 compute bu+1 bu

2 (mod n) for 0 u k-1,
 if bu+1 -1, stop, choose another au+1 , p,
 if bu+1 1 then gcd(bu-1, n) is a factor (basic factoring principle)

 Question: How do we find a universal exponent r ??? Hard

41

Universal Exponent FactorizationUniversal Exponent Factorization
 if we have an exponent r, s.t. ar 1 (mod n) for all a gcd(a,n)=1
 write r = 2k ꞏ m with m odd
 choose a random a, 1<a<n-1

r must be even since we can
take a-1 (-1)r 1 (mod n)
requires r being even

 if gcd(a, n) 1, we have a factor
 else

l b m (d) if b h h

requires r being even

a1 do not work
 let b0 am (mod n), if b0 1 stop, choose another a
 compute bu+1 bu

2 (mod n) for 0 u k-1,
 if bu+1 -1, stop, choose another au+1 , p,
 if bu+1 1 then gcd(bu-1, n) is a factor (basic factoring principle)

 Question: How do we find a universal exponent r ??? Hard
 Note: if know (n), then any r = k (n) will do, however, knowing

factors of n is a prerequisite of know (n)

41

Universal Exponent FactorizationUniversal Exponent Factorization
 if we have an exponent r, s.t. ar 1 (mod n) for all a gcd(a,n)=1
 write r = 2k ꞏ m with m odd
 choose a random a, 1<a<n-1

r must be even since we can
take a-1 (-1)r 1 (mod n)
requires r being even

 if gcd(a, n) 1, we have a factor
 else

l b m (d) if b h h

requires r being even

a1 do not work
 let b0 am (mod n), if b0 1 stop, choose another a
 compute bu+1 bu

2 (mod n) for 0 u k-1,
 if bu+1 -1, stop, choose another au+1 , p,
 if bu+1 1 then gcd(bu-1, n) is a factor (basic factoring principle)

 Question: How do we find a universal exponent r ??? Hard
 Note: if know (n), then any r = k (n) will do, however, knowing

factors of n is a prerequisite of know (n)
N F RSA if h i d i d h

41

 Note: For RSA, if the private exponent d is recovered, then

Universal Exponent FactorizationUniversal Exponent Factorization
 if we have an exponent r, s.t. ar 1 (mod n) for all a gcd(a,n)=1
 write r = 2k ꞏ m with m odd
 choose a random a, 1<a<n-1

r must be even since we can
take a-1 (-1)r 1 (mod n)
requires r being even

 if gcd(a, n) 1, we have a factor
 else

l b m (d) if b h h

requires r being even

a1 do not work
 let b0 am (mod n), if b0 1 stop, choose another a
 compute bu+1 bu

2 (mod n) for 0 u k-1,
 if bu+1 -1, stop, choose another au+1 , p,
 if bu+1 1 then gcd(bu-1, n) is a factor (basic factoring principle)

 Question: How do we find a universal exponent r ??? Hard
 Note: if know (n), then any r = k (n) will do, however, knowing

factors of n is a prerequisite of know (n)
N F RSA if h i d i d h

41

 Note: For RSA, if the private exponent d is recovered, then
(n) | dꞏe-1, dꞏe-1 is a universal exponent

Universal Exponent FactorizationUniversal Exponent Factorization
 E.g.g

n=211463707796206571; e=9007; d=116402471153538991

42

Universal Exponent FactorizationUniversal Exponent Factorization
 E.g.g

n=211463707796206571; e=9007; d=116402471153538991
r=e*d-1=1048437057679925691936; powermod(2,r,n)=1

42

Universal Exponent FactorizationUniversal Exponent Factorization
 E.g.g

n=211463707796206571; e=9007; d=116402471153538991
r=e*d-1=1048437057679925691936; powermod(2,r,n)=1
let r=25*r1; r1=32763658052497677873

42

Universal Exponent FactorizationUniversal Exponent Factorization
 E.g.g

n=211463707796206571; e=9007; d=116402471153538991
r=e*d-1=1048437057679925691936; powermod(2,r,n)=1
let r=25*r1; r1=32763658052497677873
powermod(2,r1,n)=187568564780117371　　1

42

Universal Exponent FactorizationUniversal Exponent Factorization
 E.g.g

n=211463707796206571; e=9007; d=116402471153538991
r=e*d-1=1048437057679925691936; powermod(2,r,n)=1
let r=25*r1; r1=32763658052497677873
powermod(2,r1,n)=187568564780117371　　1
powermod(2,2*r1,n)=113493629663725812 　1

42

Universal Exponent FactorizationUniversal Exponent Factorization
 E.g.g

n=211463707796206571; e=9007; d=116402471153538991
r=e*d-1=1048437057679925691936; powermod(2,r,n)=1
let r=25*r1; r1=32763658052497677873
powermod(2,r1,n)=187568564780117371　　1
powermod(2,2*r1,n)=113493629663725812 　1
powermod(2,4*r1,n)=1 => gcd(2*r1-1,n)=885320963 is a factor

42

Universal Exponent FactorizationUniversal Exponent Factorization
 E.g.g

n=211463707796206571; e=9007; d=116402471153538991
r=e*d-1=1048437057679925691936; powermod(2,r,n)=1
let r=25*r1; r1=32763658052497677873
powermod(2,r1,n)=187568564780117371　　1
powermod(2,2*r1,n)=113493629663725812 　1
powermod(2,4*r1,n)=1 => gcd(2*r1-1,n)=885320963 is a factor

 Note: n = 211463707796206571 = 238855417 885320963

42

Universal Exponent FactorizationUniversal Exponent Factorization
 E.g.g

n=211463707796206571; e=9007; d=116402471153538991
r=e*d-1=1048437057679925691936; powermod(2,r,n)=1
let r=25*r1; r1=32763658052497677873
powermod(2,r1,n)=187568564780117371　　1
powermod(2,2*r1,n)=113493629663725812 　1
powermod(2,4*r1,n)=1 => gcd(2*r1-1,n)=885320963 is a factor

 Note: n = 211463707796206571 = 238855417 885320963
238855417 – 1 = 23 　 3 　 73 　 136333 = 2k1 p1

42

Universal Exponent FactorizationUniversal Exponent Factorization
 E.g.g

n=211463707796206571; e=9007; d=116402471153538991
r=e*d-1=1048437057679925691936; powermod(2,r,n)=1
let r=25*r1; r1=32763658052497677873
powermod(2,r1,n)=187568564780117371　　1
powermod(2,2*r1,n)=113493629663725812 　1
powermod(2,4*r1,n)=1 => gcd(2*r1-1,n)=885320963 is a factor

 Note: n = 211463707796206571 = 238855417 885320963
238855417 – 1 = 23 　 3 　 73 　 136333 = 2k1 p1
885320963 1 2 2069 213949 2k885320963 – 1 = 2 2069 213949 = 2k2 q1

42

Universal Exponent FactorizationUniversal Exponent Factorization
 E.g.g

n=211463707796206571; e=9007; d=116402471153538991
r=e*d-1=1048437057679925691936; powermod(2,r,n)=1
let r=25*r1; r1=32763658052497677873
powermod(2,r1,n)=187568564780117371　　1
powermod(2,2*r1,n)=113493629663725812 　1
powermod(2,4*r1,n)=1 => gcd(2*r1-1,n)=885320963 is a factor

 Note: n = 211463707796206571 = 238855417 885320963
238855417 – 1 = 23 　 3 　 73 　 136333 = 2k1 p1
885320963 1 2 2069 213949 2k885320963 – 1 = 2 2069 213949 = 2k2 q1
This method works only when k1 does not equal k2.

42

Universal Exponent FactorizationUniversal Exponent Factorization
 E.g.g

n=211463707796206571; e=9007; d=116402471153538991
r=e*d-1=1048437057679925691936; powermod(2,r,n)=1
let r=25*r1; r1=32763658052497677873
powermod(2,r1,n)=187568564780117371　　1
powermod(2,2*r1,n)=113493629663725812 　1
powermod(2,4*r1,n)=1 => gcd(2*r1-1,n)=885320963 is a factor

 Note: n = 211463707796206571 = 238855417 885320963
238855417 – 1 = 23 　 3 　 73 　 136333 = 2k1 p1
885320963 1 2 2069 213949 2k885320963 – 1 = 2 2069 213949 = 2k2 q1
This method works only when k1 does not equal k2.

42

 Exponent factorization even if r is valid for one a, you can still
try the above procedure

p 1 factoring (1/2)p-1 factoring (1/2)
 If one of the prime factors of n has a special property, it is p p p p y

sometimes easier to factor n.

43

p 1 factoring (1/2)p-1 factoring (1/2)
 If one of the prime factors of n has a special property, it is p p p p y

sometimes easier to factor n.
 e.g. if p-1 has only small prime factors

43

p 1 factoring (1/2)p-1 factoring (1/2)
 If one of the prime factors of n has a special property, it is p p p p y

sometimes easier to factor n.
 e.g. if p-1 has only small prime factors
 Pollard 1974

43

p 1 factoring (1/2)p-1 factoring (1/2)
 If one of the prime factors of n has a special property, it is p p p p y

sometimes easier to factor n.
 e.g. if p-1 has only small prime factors
 Pollard 1974

 Algorithm
 Choose an integer a > 1 (often a = 2 is used)

43

p 1 factoring (1/2)p-1 factoring (1/2)
 If one of the prime factors of n has a special property, it is p p p p y

sometimes easier to factor n.
 e.g. if p-1 has only small prime factors
 Pollard 1974

 Algorithm
 Choose an integer a > 1 (often a = 2 is used)
 Choose a bound B

43

p 1 factoring (1/2)p-1 factoring (1/2)
 If one of the prime factors of n has a special property, it is p p p p y

sometimes easier to factor n.
 e.g. if p-1 has only small prime factors
 Pollard 1974

 Algorithm
 Choose an integer a > 1 (often a = 2 is used)
 Choose a bound B have a chance of being larger

than all the prime factors of p-1

than all the prime factors of p 1

43

p 1 factoring (1/2)p-1 factoring (1/2)
 If one of the prime factors of n has a special property, it is p p p p y

sometimes easier to factor n.
 e.g. if p-1 has only small prime factors
 Pollard 1974

 Algorithm
 Choose an integer a > 1 (often a = 2 is used)
 Choose a bound B have a chance of being larger

than all the prime factors of p-1
 Compute b aB! as follows:

than all the prime factors of p 1

43

p 1 factoring (1/2)p-1 factoring (1/2)
 If one of the prime factors of n has a special property, it is p p p p y

sometimes easier to factor n.
 e.g. if p-1 has only small prime factors
 Pollard 1974

 Algorithm
 Choose an integer a > 1 (often a = 2 is used)
 Choose a bound B have a chance of being larger

than all the prime factors of p-1
 Compute b aB! as follows:

 b1 a (mod n) and bj bj-1
j (mod n) then b bB (mod n)

than all the prime factors of p 1

43

p 1 factoring (1/2)p-1 factoring (1/2)
 If one of the prime factors of n has a special property, it is p p p p y

sometimes easier to factor n.
 e.g. if p-1 has only small prime factors
 Pollard 1974

 Algorithm
 Choose an integer a > 1 (often a = 2 is used)
 Choose a bound B have a chance of being larger

than all the prime factors of p-1
 Compute b aB! as follows:

 b1 a (mod n) and bj bj-1
j (mod n) then b bB (mod n)

L t d d(b 1) if 1 d h f d f t f

than all the prime factors of p 1

 Let d = gcd(b-1, n), if 1 < d < n, we have found a factor of n

43

p 1 factoring (1/2)p-1 factoring (1/2)
 If one of the prime factors of n has a special property, it is p p p p y

sometimes easier to factor n.
 e.g. if p-1 has only small prime factors
 Pollard 1974

 Algorithm
 Choose an integer a > 1 (often a = 2 is used)
 Choose a bound B have a chance of being larger

than all the prime factors of p-1
 Compute b aB! as follows:

 b1 a (mod n) and bj bj-1
j (mod n) then b bB (mod n)

L t d d(b 1) if 1 d h f d f t f

than all the prime factors of p 1

 Let d = gcd(b-1, n), if 1 < d < n, we have found a factor of n
If B is larger than all the prime factors of p-1 p-1|B!
therefore baB! (ap-1)k1 (mod p), i.e. p|b-1

43

() (p) p|

p 1 factoring (1/2)p-1 factoring (1/2)
 If one of the prime factors of n has a special property, it is p p p p y

sometimes easier to factor n.
 e.g. if p-1 has only small prime factors
 Pollard 1974

 Algorithm
 Choose an integer a > 1 (often a = 2 is used)
 Choose a bound B have a chance of being larger

than all the prime factors of p-1
 Compute b aB! as follows:

 b1 a (mod n) and bj bj-1
j (mod n) then b bB (mod n)

L t d d(b 1) if 1 d h f d f t f

than all the prime factors of p 1

 Let d = gcd(b-1, n), if 1 < d < n, we have found a factor of n
If B is larger than all the prime factors of p-1 p-1|B!
therefore baB! (ap-1)k1 (mod p), i.e. p|b-1 Fermat Little’s Thm

43

() (p) p|

p 1 factoring (1/2)p-1 factoring (1/2)
 If one of the prime factors of n has a special property, it is p p p p y

sometimes easier to factor n.
 e.g. if p-1 has only small prime factors
 Pollard 1974

 Algorithm
 Choose an integer a > 1 (often a = 2 is used)
 Choose a bound B have a chance of being larger

than all the prime factors of p-1
 Compute b aB! as follows:

 b1 a (mod n) and bj bj-1
j (mod n) then b bB (mod n)

L t d d(b 1) if 1 d h f d f t f

than all the prime factors of p 1

 Let d = gcd(b-1, n), if 1 < d < n, we have found a factor of n
If B is larger than all the prime factors of p-1 p-1|B!
therefore baB! (ap-1)k1 (mod p), i.e. p|b-1 Fermat Little’s Thm

(very likely)

43

() (p) p|

p 1 factoring (1/2)p-1 factoring (1/2)
 If one of the prime factors of n has a special property, it is p p p p y

sometimes easier to factor n.
 e.g. if p-1 has only small prime factors
 Pollard 1974

 Algorithm
 Choose an integer a > 1 (often a = 2 is used)
 Choose a bound B have a chance of being larger

than all the prime factors of p-1
 Compute b aB! as follows:

 b1 a (mod n) and bj bj-1
j (mod n) then b bB (mod n)

L t d d(b 1) if 1 d h f d f t f

than all the prime factors of p 1

 Let d = gcd(b-1, n), if 1 < d < n, we have found a factor of n
If B is larger than all the prime factors of p-1 p-1|B!
therefore baB! (ap-1)k1 (mod p), i.e. p|b-1 Fermat Little’s Thm

(very likely)

43

() (p) p|

If n=pꞏq, p-1 and q-1 both have small factors that are less than B, then gcd(b-1,n)=n,
(useless) however, b aB! 1 (mod n) and we can use the Universal exponent method

p 1 factoring (2/2)p-1 factoring (2/2)
 How do we choose B?

44

p 1 factoring (2/2)p-1 factoring (2/2)
 How do we choose B?

 small B will be faster but fails often

44

p 1 factoring (2/2)p-1 factoring (2/2)
 How do we choose B?

 small B will be faster but fails often
 large B will be very slow

44

p 1 factoring (2/2)p-1 factoring (2/2)
 How do we choose B?

 small B will be faster but fails often
 large B will be very slow

 In RSA, Rabin, Paillier, or other systems based on
integer factoring, usually n=pꞏq, we should ensure that
p-1 has at least one large prime factor.

44

p 1 factoring (2/2)p-1 factoring (2/2)
 How do we choose B?

 small B will be faster but fails often
 large B will be very slow

 In RSA, Rabin, Paillier, or other systems based on
integer factoring, usually n=pꞏq, we should ensure that
p-1 has at least one large prime factor.
 How do we do this?

44

p 1 factoring (2/2)p-1 factoring (2/2)
 How do we choose B?

 small B will be faster but fails often
 large B will be very slow

 In RSA, Rabin, Paillier, or other systems based on
integer factoring, usually n=pꞏq, we should ensure that
p-1 has at least one large prime factor.
 How do we do this?

e.g. we want to choose p around 100 digits

44

p 1 factoring (2/2)p-1 factoring (2/2)
 How do we choose B?

 small B will be faster but fails often
 large B will be very slow

 In RSA, Rabin, Paillier, or other systems based on
integer factoring, usually n=pꞏq, we should ensure that
p-1 has at least one large prime factor.
 How do we do this?

e.g. we want to choose p around 100 digits
 choose a prime number p0 around 40 digits

44

p 1 factoring (2/2)p-1 factoring (2/2)
 How do we choose B?

 small B will be faster but fails often
 large B will be very slow

 In RSA, Rabin, Paillier, or other systems based on
integer factoring, usually n=pꞏq, we should ensure that
p-1 has at least one large prime factor.
 How do we do this?

e.g. we want to choose p around 100 digits
 choose a prime number p0 around 40 digits
 look at integer kꞏp +1 with k around 60 digits and do primality test look at integer kꞏp0+1 with k around 60 digits and do primality test

44

p 1 factoring (2/2)p-1 factoring (2/2)
 How do we choose B?

 small B will be faster but fails often
 large B will be very slow

 In RSA, Rabin, Paillier, or other systems based on
integer factoring, usually n=pꞏq, we should ensure that
p-1 has at least one large prime factor.
 How do we do this?

e.g. we want to choose p around 100 digits
 choose a prime number p0 around 40 digits
 look at integer kꞏp +1 with k around 60 digits and do primality test look at integer kꞏp0+1 with k around 60 digits and do primality test

 Generalization:
Elliptic curve factorization method Lenstra 1985

44

Elliptic curve factorization method, Lenstra, 1985

p 1 factoring (2/2)p-1 factoring (2/2)
 How do we choose B?

 small B will be faster but fails often
 large B will be very slow

 In RSA, Rabin, Paillier, or other systems based on
integer factoring, usually n=pꞏq, we should ensure that
p-1 has at least one large prime factor.
 How do we do this?

e.g. we want to choose p around 100 digits
 choose a prime number p0 around 40 digits
 look at integer kꞏp +1 with k around 60 digits and do primality test look at integer kꞏp0+1 with k around 60 digits and do primality test

 Generalization:
Elliptic curve factorization method Lenstra 1985

44

Elliptic curve factorization method, Lenstra, 1985
 Best records: p-1: 34 digits (113 bits), ECM: 47 digits (143 bits)

Quadratic Sieve (1/4)Quadratic Sieve (1/4)
 Example: factor n = 3837523p

45

Quadratic Sieve (1/4)Quadratic Sieve (1/4)
 Example: factor n = 3837523p

 form the following relations

45

Quadratic Sieve (1/4)Quadratic Sieve (1/4)
 Example: factor n = 3837523p

 form the following relations
93982 55 ꞏ 19 (mod 3837523)()

45

Quadratic Sieve (1/4)Quadratic Sieve (1/4)
 Example: factor n = 3837523p

 form the following relations
93982 55 ꞏ 19 (mod 3837523)

individual factors are small
()

45

Quadratic Sieve (1/4)Quadratic Sieve (1/4)
 Example: factor n = 3837523p

 form the following relations
93982 55 ꞏ 19 (mod 3837523)

individual factors are small
()

190952 22 ꞏ 5 ꞏ 11 ꞏ 13 ꞏ 19 (mod 3837523)

45

Quadratic Sieve (1/4)Quadratic Sieve (1/4)
 Example: factor n = 3837523p

 form the following relations
93982 55 ꞏ 19 (mod 3837523)

individual factors are small
()

190952 22 ꞏ 5 ꞏ 11 ꞏ 13 ꞏ 19 (mod 3837523)

k h b

make the number
of each factors even

45

Quadratic Sieve (1/4)Quadratic Sieve (1/4)
 Example: factor n = 3837523p

 form the following relations
93982 55 ꞏ 19 (mod 3837523)

individual factors are small
()

190952 22 ꞏ 5 ꞏ 11 ꞏ 13 ꞏ 19 (mod 3837523)
19642 32 ꞏ 133 (mod 3837523)

k h b

make the number
of each factors even

45

Quadratic Sieve (1/4)Quadratic Sieve (1/4)
 Example: factor n = 3837523p

 form the following relations
93982 55 ꞏ 19 (mod 3837523)

individual factors are small
()

190952 22 ꞏ 5 ꞏ 11 ꞏ 13 ꞏ 19 (mod 3837523)
19642 32 ꞏ 133 (mod 3837523)

k h b170782 26 ꞏ 32 ꞏ 11 (mod 3837523)

make the number
of each factors even

45

Quadratic Sieve (1/4)Quadratic Sieve (1/4)
 Example: factor n = 3837523p

 form the following relations
93982 55 ꞏ 19 (mod 3837523)

individual factors are small
()

190952 22 ꞏ 5 ꞏ 11 ꞏ 13 ꞏ 19 (mod 3837523)
19642 32 ꞏ 133 (mod 3837523)

k h b170782 26 ꞏ 32 ꞏ 11 (mod 3837523)

make the number
of each factors even

45

Quadratic Sieve (1/4)Quadratic Sieve (1/4)
 Example: factor n = 3837523p

 form the following relations
93982 55 ꞏ 19 (mod 3837523)

individual factors are small
()

190952 22 ꞏ 5 ꞏ 11 ꞏ 13 ꞏ 19 (mod 3837523)
19642 32 ꞏ 133 (mod 3837523)

k h b170782 26 ꞏ 32 ꞏ 11 (mod 3837523)
 multiply the above relations

make the number
of each factors even

45

Quadratic Sieve (1/4)Quadratic Sieve (1/4)
 Example: factor n = 3837523p

 form the following relations
93982 55 ꞏ 19 (mod 3837523)

individual factors are small
()

190952 22 ꞏ 5 ꞏ 11 ꞏ 13 ꞏ 19 (mod 3837523)
19642 32 ꞏ 133 (mod 3837523)

k h b170782 26 ꞏ 32 ꞏ 11 (mod 3837523)
 multiply the above relations

make the number
of each factors even

(9398 ꞏ 19095 ꞏ 1964 ꞏ 17078)2 (24 ꞏ 32 ꞏ 53 ꞏ 11 ꞏ 132 ꞏ 19)2

45

Quadratic Sieve (1/4)Quadratic Sieve (1/4)
 Example: factor n = 3837523p

 form the following relations
93982 55 ꞏ 19 (mod 3837523)

individual factors are small
()

190952 22 ꞏ 5 ꞏ 11 ꞏ 13 ꞏ 19 (mod 3837523)
19642 32 ꞏ 133 (mod 3837523)

k h b170782 26 ꞏ 32 ꞏ 11 (mod 3837523)
 multiply the above relations

make the number
of each factors even

(9398 ꞏ 19095 ꞏ 1964 ꞏ 17078)2 (24 ꞏ 32 ꞏ 53 ꞏ 11 ꞏ 132 ꞏ 19)2

22303872 25867052

45

Quadratic Sieve (1/4)Quadratic Sieve (1/4)
 Example: factor n = 3837523p

 form the following relations
93982 55 ꞏ 19 (mod 3837523)

individual factors are small
()

190952 22 ꞏ 5 ꞏ 11 ꞏ 13 ꞏ 19 (mod 3837523)
19642 32 ꞏ 133 (mod 3837523)

k h b170782 26 ꞏ 32 ꞏ 11 (mod 3837523)
 multiply the above relations

make the number
of each factors even

(9398 ꞏ 19095 ꞏ 1964 ꞏ 17078)2 (24 ꞏ 32 ꞏ 53 ꞏ 11 ꞏ 132 ꞏ 19)2

22303872 25867052

 since 2230387 2586705 (mod 3837523)

45

Quadratic Sieve (1/4)Quadratic Sieve (1/4)
 Example: factor n = 3837523p

 form the following relations
93982 55 ꞏ 19 (mod 3837523)

individual factors are small
()

190952 22 ꞏ 5 ꞏ 11 ꞏ 13 ꞏ 19 (mod 3837523)
19642 32 ꞏ 133 (mod 3837523)

k h b170782 26 ꞏ 32 ꞏ 11 (mod 3837523)
 multiply the above relations

make the number
of each factors even

(9398 ꞏ 19095 ꞏ 1964 ꞏ 17078)2 (24 ꞏ 32 ꞏ 53 ꞏ 11 ꞏ 132 ꞏ 19)2

22303872 25867052 hope they are not equal
 since 2230387 2586705 (mod 3837523)

45

Quadratic Sieve (1/4)Quadratic Sieve (1/4)
 Example: factor n = 3837523p

 form the following relations
93982 55 ꞏ 19 (mod 3837523)

individual factors are small
()

190952 22 ꞏ 5 ꞏ 11 ꞏ 13 ꞏ 19 (mod 3837523)
19642 32 ꞏ 133 (mod 3837523)

k h b170782 26 ꞏ 32 ꞏ 11 (mod 3837523)
 multiply the above relations

make the number
of each factors even

(9398 ꞏ 19095 ꞏ 1964 ꞏ 17078)2 (24 ꞏ 32 ꞏ 53 ꞏ 11 ꞏ 132 ꞏ 19)2

22303872 25867052 hope they are not equal
 since 2230387 2586705 (mod 3837523)
 gcd(2230387-2586705, 3837523) = 1093 is one factor of n

45

Quadratic Sieve (1/4)Quadratic Sieve (1/4)
 Example: factor n = 3837523p

 form the following relations
93982 55 ꞏ 19 (mod 3837523)

individual factors are small
()

190952 22 ꞏ 5 ꞏ 11 ꞏ 13 ꞏ 19 (mod 3837523)
19642 32 ꞏ 133 (mod 3837523)

k h b170782 26 ꞏ 32 ꞏ 11 (mod 3837523)
 multiply the above relations

make the number
of each factors even

(9398 ꞏ 19095 ꞏ 1964 ꞏ 17078)2 (24 ꞏ 32 ꞏ 53 ꞏ 11 ꞏ 132 ꞏ 19)2

22303872 25867052 hope they are not equal
 since 2230387 2586705 (mod 3837523)
 gcd(2230387-2586705, 3837523) = 1093 is one factor of n

h h f i 3837523/1093 3511

45

 the other factor is 3837523/1093 = 3511

Quadratic Sieve (2/4)Quadratic Sieve (2/4)
 Quadratic? x2 product of small primesQ p p

46

Quadratic Sieve (2/4)Quadratic Sieve (2/4)
 Quadratic? x2 product of small primesQ p p
 How do we construct these useful relations systematically?

46

Quadratic Sieve (2/4)Quadratic Sieve (2/4)
 Quadratic? x2 product of small primesQ p p
 How do we construct these useful relations systematically?
 Properties of these relations:p

 product of small primes called factor base

46

Quadratic Sieve (2/4)Quadratic Sieve (2/4)
 Quadratic? x2 product of small primesQ p p
 How do we construct these useful relations systematically?
 Properties of these relations:p

 product of small primes called factor base
 make all prime factors appear even times

46

Quadratic Sieve (2/4)Quadratic Sieve (2/4)
 Quadratic? x2 product of small primesQ p p
 How do we construct these useful relations systematically?
 Properties of these relations:p

 product of small primes called factor base
 make all prime factors appear even times

h l i i i Put these relations in a matrix

46

Quadratic Sieve (2/4)Quadratic Sieve (2/4)
 Quadratic? x2 product of small primesQ p p
 How do we construct these useful relations systematically?
 Properties of these relations:p

 product of small primes called factor base
 make all prime factors appear even times

h l i i i Put these relations in a matrix
2 3 5 7 1311 1917
0 0 5 0 0 0 0 19398

19095
1964

0 0 5 0 0 0 0 1
2 0 1 0 1 1 0 1
0 2 0 0 0 3 0 01964

17078
8077

6 2 0 0 1 0 0 0
0 2 0 0 0 3 0 0

1 0 0 0 0 0 0 1

46

3397
14262

5 0 1 0 0 2 0 0
0 0 2 2 0 1 0 0

Quadratic Sieve (2/4)Quadratic Sieve (2/4)
 Quadratic? x2 product of small primesQ p p
 How do we construct these useful relations systematically?
 Properties of these relations:p

 product of small primes called factor base
 make all prime factors appear even times

h l i i i Put these relations in a matrix
2 3 5 7 1311 1917
0 0 5 0 0 0 0 1

add
9398
19095
1964

0 0 5 0 0 0 0 1
2 0 1 0 1 1 0 1
0 2 0 0 0 3 0 01964

17078
8077

6 2 0 0 1 0 0 0
0 2 0 0 0 3 0 0

1 0 0 0 0 0 0 1

46

3397
14262

5 0 1 0 0 2 0 0
0 0 2 2 0 1 0 0

Quadratic Sieve (2/4)Quadratic Sieve (2/4)
 Quadratic? x2 product of small primesQ p p
 How do we construct these useful relations systematically?
 Properties of these relations:p

 product of small primes called factor base
 make all prime factors appear even times

h l i i i Put these relations in a matrix
2 3 5 7 1311 1917
0 0 5 0 0 0 0 1

add
9398
19095
1964

0 0 5 0 0 0 0 1
2 0 1 0 1 1 0 1
0 2 0 0 0 3 0 01964

17078
8077

6 2 0 0 1 0 0 0
0 2 0 0 0 3 0 0

1 0 0 0 0 0 0 1 Pick rows where sums
f h l

46

3397
14262

5 0 1 0 0 2 0 0
0 0 2 2 0 1 0 0

of each column are even

Quadratic Sieve (3/4)Quadratic Sieve (3/4)
 Look for linear dependencies mod 2 among the rows Look for linear dependencies mod 2 among the rows

47

Quadratic Sieve (3/4)Quadratic Sieve (3/4)
 Look for linear dependencies mod 2 among the rows Look for linear dependencies mod 2 among the rows

 1st + 5th + 6th = (6, 0, 6, 0, 0, 2, 0, 2) 0 (mod 2)

47

Quadratic Sieve (3/4)Quadratic Sieve (3/4)
 Look for linear dependencies mod 2 among the rows Look for linear dependencies mod 2 among the rows

 1st + 5th + 6th = (6, 0, 6, 0, 0, 2, 0, 2) 0 (mod 2)
 1st + 2nd + 3rd + 4th = (8 4 6 0 2 4 0 2) 0 (mod 2) 1st + 2nd + 3rd + 4th (8, 4, 6, 0, 2, 4, 0, 2) 0 (mod 2)

47

Quadratic Sieve (3/4)Quadratic Sieve (3/4)
 Look for linear dependencies mod 2 among the rows Look for linear dependencies mod 2 among the rows

 1st + 5th + 6th = (6, 0, 6, 0, 0, 2, 0, 2) 0 (mod 2)
 1st + 2nd + 3rd + 4th = (8 4 6 0 2 4 0 2) 0 (mod 2) 1st + 2nd + 3rd + 4th (8, 4, 6, 0, 2, 4, 0, 2) 0 (mod 2)
 3rd + 7th = (0, 2, 2, 2, 0, 4, 0, 0) 0 (mod 2)

47

Quadratic Sieve (3/4)Quadratic Sieve (3/4)
 Look for linear dependencies mod 2 among the rows Look for linear dependencies mod 2 among the rows

 1st + 5th + 6th = (6, 0, 6, 0, 0, 2, 0, 2) 0 (mod 2)
 1st + 2nd + 3rd + 4th = (8 4 6 0 2 4 0 2) 0 (mod 2) 1st + 2nd + 3rd + 4th (8, 4, 6, 0, 2, 4, 0, 2) 0 (mod 2)
 3rd + 7th = (0, 2, 2, 2, 0, 4, 0, 0) 0 (mod 2)

 When we have such a dependency the product of the When we have such a dependency, the product of the
numbers yields a square.

47

Quadratic Sieve (3/4)Quadratic Sieve (3/4)
 Look for linear dependencies mod 2 among the rows Look for linear dependencies mod 2 among the rows

 1st + 5th + 6th = (6, 0, 6, 0, 0, 2, 0, 2) 0 (mod 2)
 1st + 2nd + 3rd + 4th = (8 4 6 0 2 4 0 2) 0 (mod 2) 1st + 2nd + 3rd + 4th (8, 4, 6, 0, 2, 4, 0, 2) 0 (mod 2)
 3rd + 7th = (0, 2, 2, 2, 0, 4, 0, 0) 0 (mod 2)

 When we have such a dependency the product of the When we have such a dependency, the product of the
numbers yields a square.
 (9398 ꞏ 8077 ꞏ 3397)2 26 ꞏ 56 ꞏ 132 ꞏ 192 (23 ꞏ 53 ꞏ 13 ꞏ 19)2 (9398 8077 3397) 2 5 13 19 (2 5 13 19)

47

Quadratic Sieve (3/4)Quadratic Sieve (3/4)
 Look for linear dependencies mod 2 among the rows Look for linear dependencies mod 2 among the rows

 1st + 5th + 6th = (6, 0, 6, 0, 0, 2, 0, 2) 0 (mod 2)
 1st + 2nd + 3rd + 4th = (8 4 6 0 2 4 0 2) 0 (mod 2) 1st + 2nd + 3rd + 4th (8, 4, 6, 0, 2, 4, 0, 2) 0 (mod 2)
 3rd + 7th = (0, 2, 2, 2, 0, 4, 0, 0) 0 (mod 2)

 When we have such a dependency the product of the When we have such a dependency, the product of the
numbers yields a square.
 (9398 ꞏ 8077 ꞏ 3397)2 26 ꞏ 56 ꞏ 132 ꞏ 192 (23 ꞏ 53 ꞏ 13 ꞏ 19)2 (9398 8077 3397) 2 5 13 19 (2 5 13 19)
 (9398 ꞏ 19095 ꞏ 1964 ꞏ 17078)2 (23 ꞏ 32 ꞏ 53 ꞏ 11 ꞏ 132 ꞏ 19)2

47

Quadratic Sieve (3/4)Quadratic Sieve (3/4)
 Look for linear dependencies mod 2 among the rows Look for linear dependencies mod 2 among the rows

 1st + 5th + 6th = (6, 0, 6, 0, 0, 2, 0, 2) 0 (mod 2)
 1st + 2nd + 3rd + 4th = (8 4 6 0 2 4 0 2) 0 (mod 2) 1st + 2nd + 3rd + 4th (8, 4, 6, 0, 2, 4, 0, 2) 0 (mod 2)
 3rd + 7th = (0, 2, 2, 2, 0, 4, 0, 0) 0 (mod 2)

 When we have such a dependency the product of the When we have such a dependency, the product of the
numbers yields a square.
 (9398 ꞏ 8077 ꞏ 3397)2 26 ꞏ 56 ꞏ 132 ꞏ 192 (23 ꞏ 53 ꞏ 13 ꞏ 19)2 (9398 8077 3397) 2 5 13 19 (2 5 13 19)
 (9398 ꞏ 19095 ꞏ 1964 ꞏ 17078)2 (23 ꞏ 32 ꞏ 53 ꞏ 11 ꞏ 132 ꞏ 19)2

 (1964 14262)2 (3 5 7 132)2 (1964 ꞏ 14262)2 (3 ꞏ 5 ꞏ 7 ꞏ 132)2

47

Quadratic Sieve (3/4)Quadratic Sieve (3/4)
 Look for linear dependencies mod 2 among the rows Look for linear dependencies mod 2 among the rows

 1st + 5th + 6th = (6, 0, 6, 0, 0, 2, 0, 2) 0 (mod 2)
 1st + 2nd + 3rd + 4th = (8 4 6 0 2 4 0 2) 0 (mod 2) 1st + 2nd + 3rd + 4th (8, 4, 6, 0, 2, 4, 0, 2) 0 (mod 2)
 3rd + 7th = (0, 2, 2, 2, 0, 4, 0, 0) 0 (mod 2)

 When we have such a dependency the product of the When we have such a dependency, the product of the
numbers yields a square.
 (9398 ꞏ 8077 ꞏ 3397)2 26 ꞏ 56 ꞏ 132 ꞏ 192 (23 ꞏ 53 ꞏ 13 ꞏ 19)2 (9398 8077 3397) 2 5 13 19 (2 5 13 19)
 (9398 ꞏ 19095 ꞏ 1964 ꞏ 17078)2 (23 ꞏ 32 ꞏ 53 ꞏ 11 ꞏ 132 ꞏ 19)2

 (1964 14262)2 (3 5 7 132)2 (1964 ꞏ 14262)2 (3 ꞏ 5 ꞏ 7 ꞏ 132)2

 Looking for those x2 y2 but x y

47

Quadratic Sieve (4/4)Quadratic Sieve (4/4)
 How do we find numbers x s.t.

x2 product of small primes?

48

Quadratic Sieve (4/4)Quadratic Sieve (4/4)
 How do we find numbers x s.t.

x2 product of small primes?
 produce squares that are slightly larger than a multiple of np q g y g p

48

Quadratic Sieve (4/4)Quadratic Sieve (4/4)
 How do we find numbers x s.t.

x2 product of small primes?
 produce squares that are slightly larger than a multiple of np q g y g p

e.g. i ꞏ n + j for small j

48

Quadratic Sieve (4/4)Quadratic Sieve (4/4)
 How do we find numbers x s.t.

x2 product of small primes?
 produce squares that are slightly larger than a multiple of np q g y g p

e.g. i ꞏ n + j for small j
the square is approximately i ꞏ n + 2 j i ꞏ n + j2the square is approximately i n + 2 j i n + j

48

Quadratic Sieve (4/4)Quadratic Sieve (4/4)
 How do we find numbers x s.t.

x2 product of small primes?
 produce squares that are slightly larger than a multiple of np q g y g p

e.g. i ꞏ n + j for small j
the square is approximately i ꞏ n + 2 j i ꞏ n + j2the square is approximately i n + 2 j i n + j
which is approximately 2 j i ꞏ n + j2 (mod n)

48

Quadratic Sieve (4/4)Quadratic Sieve (4/4)
 How do we find numbers x s.t.

x2 product of small primes?
 produce squares that are slightly larger than a multiple of np q g y g p

e.g. i ꞏ n + j for small j
the square is approximately i ꞏ n + 2 j i ꞏ n + j2the square is approximately i n + 2 j i n + j
which is approximately 2 j i ꞏ n + j2 (mod n)

 Probably because this number
is small, the factors of it should

,
not be too large. However, there
are a lot of exceptions. So it
takes time. Also, there are a lot

48

of other methods to generate
qualified x values.

Quadratic Sieve (4/4)Quadratic Sieve (4/4)
 How do we find numbers x s.t.

x2 product of small primes?
 produce squares that are slightly larger than a multiple of np q g y g p

e.g. i ꞏ n + j for small j
the square is approximately i ꞏ n + 2 j i ꞏ n + j2the square is approximately i n + 2 j i n + j
which is approximately 2 j i ꞏ n + j2 (mod n)

8077 = 17n + 1 Probably because this number
is small, the factors of it should

,
not be too large. However, there
are a lot of exceptions. So it
takes time. Also, there are a lot

48

of other methods to generate
qualified x values.

Quadratic Sieve (4/4)Quadratic Sieve (4/4)
 How do we find numbers x s.t.

x2 product of small primes?
 produce squares that are slightly larger than a multiple of np q g y g p

e.g. i ꞏ n + j for small j
the square is approximately i ꞏ n + 2 j i ꞏ n + j2the square is approximately i n + 2 j i n + j
which is approximately 2 j i ꞏ n + j2 (mod n)

8077 = 17n + 1 Probably because this number
is small, the factors of it should

9398 = 23n + 4

,
not be too large. However, there
are a lot of exceptions. So it
takes time. Also, there are a lot

48

of other methods to generate
qualified x values.

The RSA ChallengeThe RSA Challenge

49

The RSA ChallengeThe RSA Challenge
 1977 Rivest, Shamir, Adleman US$100, ,

 given RSA modulus n, public exponent e, ciphertext c
n = 114381625757888867669235779976146612010218296721242362

562561842935706935245733897830597123563958705058989075562561842935706935245733897830597123563958705058989075
147599290026879543541

e = 9007
96869613 46220614 1409222 43 88290 9991124 43198c = 968696137546220614771409222543558829057599911245743198
746951209308162982251457083569314766228839896280133919
90551829945157815154

49

The RSA ChallengeThe RSA Challenge
 1977 Rivest, Shamir, Adleman US$100, ,

 given RSA modulus n, public exponent e, ciphertext c
n = 114381625757888867669235779976146612010218296721242362

562561842935706935245733897830597123563958705058989075562561842935706935245733897830597123563958705058989075
147599290026879543541

e = 9007
96869613 46220614 1409222 43 88290 9991124 43198c = 968696137546220614771409222543558829057599911245743198
746951209308162982251457083569314766228839896280133919
90551829945157815154

 Find the plaintext message

49

The RSA ChallengeThe RSA Challenge
 1977 Rivest, Shamir, Adleman US$100, ,

 given RSA modulus n, public exponent e, ciphertext c
n = 114381625757888867669235779976146612010218296721242362

562561842935706935245733897830597123563958705058989075562561842935706935245733897830597123563958705058989075
147599290026879543541

e = 9007
96869613 46220614 1409222 43 88290 9991124 43198c = 968696137546220614771409222543558829057599911245743198
746951209308162982251457083569314766228839896280133919
90551829945157815154

 Find the plaintext message
 1994 Atkins, Lenstra, and Leyland

 use 524339 small primes (less than 16333610)

49

The RSA ChallengeThe RSA Challenge
 1977 Rivest, Shamir, Adleman US$100, ,

 given RSA modulus n, public exponent e, ciphertext c
n = 114381625757888867669235779976146612010218296721242362

562561842935706935245733897830597123563958705058989075562561842935706935245733897830597123563958705058989075
147599290026879543541

e = 9007
96869613 46220614 1409222 43 88290 9991124 43198c = 968696137546220614771409222543558829057599911245743198
746951209308162982251457083569314766228839896280133919
90551829945157815154

 Find the plaintext message
 1994 Atkins, Lenstra, and Leyland

 use 524339 small primes (less than 16333610)
 plus up to two large primes (16333610 ~ 230)

49

The RSA ChallengeThe RSA Challenge
 1977 Rivest, Shamir, Adleman US$100, ,

 given RSA modulus n, public exponent e, ciphertext c
n = 114381625757888867669235779976146612010218296721242362

562561842935706935245733897830597123563958705058989075562561842935706935245733897830597123563958705058989075
147599290026879543541

e = 9007
96869613 46220614 1409222 43 88290 9991124 43198c = 968696137546220614771409222543558829057599911245743198
746951209308162982251457083569314766228839896280133919
90551829945157815154

 Find the plaintext message
 1994 Atkins, Lenstra, and Leyland

 use 524339 small primes (less than 16333610)
 plus up to two large primes (16333610 ~ 230)
 1600 computers 600 people 7 months

49

 1600 computers, 600 people, 7 months

The RSA ChallengeThe RSA Challenge
 1977 Rivest, Shamir, Adleman US$100, ,

 given RSA modulus n, public exponent e, ciphertext c
n = 114381625757888867669235779976146612010218296721242362

562561842935706935245733897830597123563958705058989075562561842935706935245733897830597123563958705058989075
147599290026879543541

e = 9007
96869613 46220614 1409222 43 88290 9991124 43198c = 968696137546220614771409222543558829057599911245743198
746951209308162982251457083569314766228839896280133919
90551829945157815154

 Find the plaintext message
 1994 Atkins, Lenstra, and Leyland

 use 524339 small primes (less than 16333610)
 plus up to two large primes (16333610 ~ 230)
 1600 computers 600 people 7 months

49

 1600 computers, 600 people, 7 months
 found 569466 ‘x2small products’ equations, out of which only 205 linear

dependencies were found

Factorization RecordsFactorization Records
Year Number of digits

1964 201964
1974
1984

20
45
711984

1994
1999

71
129 (429 bits)
155 (515 bi)1999 155 (515 bits)

2003 174 (576 bits)

50

Factorization RecordsFactorization Records
Year Number of digits

1964 201964
1974
1984

20
45
711984

1994
1999

71
129 (429 bits)
155 (515 bi)1999 155 (515 bits)

2003 174 (576 bits)

31074182404900437213507500358885679300373460228427
27545720161948823206440518081504556346829671723286

Next challenge
RSA-640

50

78243791627283803341547107310850191954852900733772
4822783525742386454014691736602477652346609

Security of the RSA FunctionSecurity of the RSA Function
B k RSA ‘i ti RSA f ti Break RSA means ‘inverting RSA function
without knowing the trapdoor’

51

Security of the RSA FunctionSecurity of the RSA Function
B k RSA ‘i ti RSA f ti Break RSA means ‘inverting RSA function
without knowing the trapdoor’ y xe (mod n)

y ()

51

Security of the RSA FunctionSecurity of the RSA Function
B k RSA ‘i ti RSA f ti Break RSA means ‘inverting RSA function
without knowing the trapdoor’ y xe (mod n)

 Factor the modulus Break RSA

y ()

51

Security of the RSA FunctionSecurity of the RSA Function
B k RSA ‘i ti RSA f ti Break RSA means ‘inverting RSA function
without knowing the trapdoor’ y xe (mod n)

 Factor the modulus Break RSA
 If we can factor the modulus we can break RSA

y ()

 If we can factor the modulus, we can break RSA

51

Security of the RSA FunctionSecurity of the RSA Function
B k RSA ‘i ti RSA f ti Break RSA means ‘inverting RSA function
without knowing the trapdoor’ y xe (mod n)

 Factor the modulus Break RSA
 If we can factor the modulus we can break RSA

y ()

 If we can factor the modulus, we can break RSA
 If we can break RSA, we don’t know whether we can factor the

modulus open problem (with negative evidences)modulus…open problem (with negative evidences)

51

Security of the RSA FunctionSecurity of the RSA Function
B k RSA ‘i ti RSA f ti Break RSA means ‘inverting RSA function
without knowing the trapdoor’ y xe (mod n)

 Factor the modulus Break RSA
 If we can factor the modulus we can break RSA

y ()

 If we can factor the modulus, we can break RSA
 If we can break RSA, we don’t know whether we can factor the

modulus open problem (with negative evidences)modulus…open problem (with negative evidences)

 Factor the modulus Calculate private key d

51

Security of the RSA FunctionSecurity of the RSA Function
B k RSA ‘i ti RSA f ti Break RSA means ‘inverting RSA function
without knowing the trapdoor’ y xe (mod n)

 Factor the modulus Break RSA
 If we can factor the modulus we can break RSA

y ()

 If we can factor the modulus, we can break RSA
 If we can break RSA, we don’t know whether we can factor the

modulus open problem (with negative evidences)modulus…open problem (with negative evidences)

 Factor the modulus Calculate private key d
 If we can factor the modulus, we can calculate the private

exponent d (the trapdoor information).

51

Security of the RSA FunctionSecurity of the RSA Function
B k RSA ‘i ti RSA f ti Break RSA means ‘inverting RSA function
without knowing the trapdoor’ y xe (mod n)

 Factor the modulus Break RSA
 If we can factor the modulus we can break RSA

y ()

 If we can factor the modulus, we can break RSA
 If we can break RSA, we don’t know whether we can factor the

modulus open problem (with negative evidences)modulus…open problem (with negative evidences)

 Factor the modulus Calculate private key d
 If we can factor the modulus, we can calculate the private

exponent d (the trapdoor information).

51

 If we have the private exponent d, we can factor the modulus.

Factoring reduces to RSA key recoveryFactoring reduces to RSA key recovery
 DeLaurentis, “A Further Weakness in the Common

Modulus Protocol for the RSA Cryptosystem,”
Cryptologia, Vol. 8, pp. 253-259, 1984yp g pp

52

Factoring reduces to RSA key recoveryFactoring reduces to RSA key recovery
 DeLaurentis, “A Further Weakness in the Common

Modulus Protocol for the RSA Cryptosystem,”
Cryptologia, Vol. 8, pp. 253-259, 1984yp g pp
 If you have a pair of RSA public-key/private-key, you can

factoring n=pꞏq with a probabilistic algorithm.

52

Factoring reduces to RSA key recoveryFactoring reduces to RSA key recovery
 DeLaurentis, “A Further Weakness in the Common

Modulus Protocol for the RSA Cryptosystem,”
Cryptologia, Vol. 8, pp. 253-259, 1984yp g pp
 If you have a pair of RSA public-key/private-key, you can

factoring n=pꞏq with a probabilistic algorithm.
 An example of the Universal Exponent Factorization method

52

Factoring reduces to RSA key recoveryFactoring reduces to RSA key recovery
 DeLaurentis, “A Further Weakness in the Common

Modulus Protocol for the RSA Cryptosystem,”
Cryptologia, Vol. 8, pp. 253-259, 1984yp g pp
 If you have a pair of RSA public-key/private-key, you can

factoring n=pꞏq with a probabilistic algorithm.
 An example of the Universal Exponent Factorization method

 Basic idea: find a number b, 0<b<n s.t.,

52

Factoring reduces to RSA key recoveryFactoring reduces to RSA key recovery
 DeLaurentis, “A Further Weakness in the Common

Modulus Protocol for the RSA Cryptosystem,”
Cryptologia, Vol. 8, pp. 253-259, 1984yp g pp
 If you have a pair of RSA public-key/private-key, you can

factoring n=pꞏq with a probabilistic algorithm.
 An example of the Universal Exponent Factorization method

 Basic idea: find a number b, 0<b<n s.t.,
b2 1 (mod n) and b 1 (mod n) i.e. 1<b<n-1

52

Factoring reduces to RSA key recoveryFactoring reduces to RSA key recovery
 DeLaurentis, “A Further Weakness in the Common

Modulus Protocol for the RSA Cryptosystem,”
Cryptologia, Vol. 8, pp. 253-259, 1984yp g pp
 If you have a pair of RSA public-key/private-key, you can

factoring n=pꞏq with a probabilistic algorithm.
 An example of the Universal Exponent Factorization method

 Basic idea: find a number b, 0<b<n s.t.,
b2 1 (mod n) and b 1 (mod n) i.e. 1<b<n-1
 Note: There are four roots to the equation b2 1 (mod n) Note: There are four roots to the equation b 1 (mod n),
1 are two of them, all satisfy (b+1)(b-1) = kꞏn = kꞏpꞏq,
since 0<b-1<b+1<n, we have either (p | b-1 and q | b+1) or

52

, (p | q |)
(q | b-1 and p | b+1), therefore, one of the factor can be found
by gcd(b-1,n) and the other by n/gcd(b-1,n) or gcd(b+1,n)

Factoring red ces to RSA ke reco erFactoring reduces to RSA key recovery
 Algorithm to find b: Pr{success per repetition} = ½

53

Factoring red ces to RSA ke reco erFactoring reduces to RSA key recovery
 Algorithm to find b: Pr{success per repetition} = ½

1. Randomly choose a, 1<a<n-1, such that gcd(a, n) = 1

53

Factoring red ces to RSA ke reco erFactoring reduces to RSA key recovery
 Algorithm to find b: Pr{success per repetition} = ½

1. Randomly choose a, 1<a<n-1, such that gcd(a, n) = 1

2 Find minimal j 2jh 1 (mod n) (where h satisfies e ꞏ d 1 = 2th)2. Find minimal j, a
j 1 (mod n) (where h satisfies e ꞏ d - 1 = 2 h)

53

Factoring red ces to RSA ke reco erFactoring reduces to RSA key recovery
 Algorithm to find b: Pr{success per repetition} = ½

1. Randomly choose a, 1<a<n-1, such that gcd(a, n) = 1

2 Find minimal j 2jh 1 (mod n) (where h satisfies e ꞏ d 1 = 2th)2. Find minimal j, a
j 1 (mod n) (where h satisfies e ꞏ d - 1 = 2 h)

3. b = a
2j-1h, if b -1 (mod n), then gcd(b-1, n) is the result, else

repeat 1-3p

53

Factoring red ces to RSA ke reco erFactoring reduces to RSA key recovery
 Algorithm to find b: Pr{success per repetition} = ½

1. Randomly choose a, 1<a<n-1, such that gcd(a, n) = 1

2 Find minimal j 2jh 1 (mod n) (where h satisfies e ꞏ d 1 = 2th)2. Find minimal j, a
j 1 (mod n) (where h satisfies e ꞏ d - 1 = 2 h)

3. b = a
2j-1h, if b -1 (mod n), then gcd(b-1, n) is the result, else

repeat 1-3p

 Note: If we randomly choose bZn
* and find out that b2 1 (mod n),

the probability that b=1 b=-1 b=c(1) or b=-c(1) would bethe probability that b 1, b 1, b c(1), or b c(1) would be
equal; Pr{success}=Pr{a

2j-1h 1}=1/2

53

Factoring red ces to RSA ke reco erFactoring reduces to RSA key recovery
 Algorithm to find b: Pr{success per repetition} = ½

1. Randomly choose a, 1<a<n-1, such that gcd(a, n) = 1

2 Find minimal j 2jh 1 (mod n) (where h satisfies e ꞏ d 1 = 2th)2. Find minimal j, a
j 1 (mod n) (where h satisfies e ꞏ d - 1 = 2 h)

3. b = a
2j-1h, if b -1 (mod n), then gcd(b-1, n) is the result, else

repeat 1-3p

 Note: If we randomly choose bZn
* and find out that b2 1 (mod n),

the probability that b=1 b=-1 b=c(1) or b=-c(1) would bethe probability that b 1, b 1, b c(1), or b c(1) would be
equal; Pr{success}=Pr{a

2j-1h 1}=1/2

 Ex: p=131 q=199 n=pꞏq=26069 e=7 d=22063 Ex: p=131, q=199, n=pꞏq=26069, e=7, d=22063

53

Factoring red ces to RSA ke reco erFactoring reduces to RSA key recovery
 Algorithm to find b: Pr{success per repetition} = ½

1. Randomly choose a, 1<a<n-1, such that gcd(a, n) = 1

2 Find minimal j 2jh 1 (mod n) (where h satisfies e ꞏ d 1 = 2th)2. Find minimal j, a
j 1 (mod n) (where h satisfies e ꞏ d - 1 = 2 h)

3. b = a
2j-1h, if b -1 (mod n), then gcd(b-1, n) is the result, else

repeat 1-3p

 Note: If we randomly choose bZn
* and find out that b2 1 (mod n),

the probability that b=1 b=-1 b=c(1) or b=-c(1) would bethe probability that b 1, b 1, b c(1), or b c(1) would be
equal; Pr{success}=Pr{a

2j-1h 1}=1/2

 Ex: p=131 q=199 n=pꞏq=26069 e=7 d=22063 Ex: p=131, q=199, n=pꞏq=26069, e=7, d=22063

(n)=(p-1)(q-1) =25740=22*6435 | ed-1=154440 = 23*19305,

53

Factoring red ces to RSA ke reco erFactoring reduces to RSA key recovery
 Algorithm to find b: Pr{success per repetition} = ½

1. Randomly choose a, 1<a<n-1, such that gcd(a, n) = 1

2 Find minimal j 2jh 1 (mod n) (where h satisfies e ꞏ d 1 = 2th)2. Find minimal j, a
j 1 (mod n) (where h satisfies e ꞏ d - 1 = 2 h)

3. b = a
2j-1h, if b -1 (mod n), then gcd(b-1, n) is the result, else

repeat 1-3p

 Note: If we randomly choose bZn
* and find out that b2 1 (mod n),

the probability that b=1 b=-1 b=c(1) or b=-c(1) would bethe probability that b 1, b 1, b c(1), or b c(1) would be
equal; Pr{success}=Pr{a

2j-1h 1}=1/2

 Ex: p=131 q=199 n=pꞏq=26069 e=7 d=22063 Ex: p=131, q=199, n=pꞏq=26069, e=7, d=22063

(n)=(p-1)(q-1) =25740=22*6435 | ed-1=154440 = 23*19305,

53

choose a=3, try j=1 (32119305=1), b= a
2j-1h= 319305 = 5372 (1)

Factoring red ces to RSA ke reco erFactoring reduces to RSA key recovery
 Algorithm to find b: Pr{success per repetition} = ½

1. Randomly choose a, 1<a<n-1, such that gcd(a, n) = 1

2 Find minimal j 2jh 1 (mod n) (where h satisfies e ꞏ d 1 = 2th)2. Find minimal j, a
j 1 (mod n) (where h satisfies e ꞏ d - 1 = 2 h)

3. b = a
2j-1h, if b -1 (mod n), then gcd(b-1, n) is the result, else

repeat 1-3p

 Note: If we randomly choose bZn
* and find out that b2 1 (mod n),

the probability that b=1 b=-1 b=c(1) or b=-c(1) would bethe probability that b 1, b 1, b c(1), or b c(1) would be
equal; Pr{success}=Pr{a

2j-1h 1}=1/2

 Ex: p=131 q=199 n=pꞏq=26069 e=7 d=22063 Ex: p=131, q=199, n=pꞏq=26069, e=7, d=22063

(n)=(p-1)(q-1) =25740=22*6435 | ed-1=154440 = 23*19305,

53

choose a=3, try j=1 (32119305=1), b= a
2j-1h= 319305 = 5372 (1)

p = gcd(b-1,n) = gcd(5371,26069) = 131, q = n/p = 199

Factoring reduces to RSA key recoveryFactoring reduces to RSA key recovery

 The above result says that “if you can recover a pair of
RSA keys, you can factoring the corresponding n=p ꞏ q”
i.e. “once a private key d is compromised, you need to
choose a new pair of (n, e) instead of changing e only”

54

Factoring reduces to RSA key recoveryFactoring reduces to RSA key recovery

 The above result says that “if you can recover a pair of
RSA keys, you can factoring the corresponding n=p ꞏ q”
i.e. “once a private key d is compromised, you need to
choose a new pair of (n, e) instead of changing e only”

Th b lt t th t h i () (The above result suggests that a scheme using (n, e1), (n,
e2), … (n, ek) with a common n for each k participants

ith t i i h th l f i iwithout giving each one the value of p, q is insecure.
You should not use the same n as some others even
th h t li itl t ld th l f d

54

though you are not explicitly told the value of p and q.

Factoring reduces to RSA key recoveryFactoring reduces to RSA key recovery
 The above result also suggests that if you can recover The above result also suggests that if you can recover

arbitrary RSA key pair, you can solve the problem of
factoring n Whenever you get an n you can form anfactoring n. Whenever you get an n, you can form an
RSA system with some e (assuming gcd(e, (n))=1), then

th d t l th i t t d ith tuse your method to solve the private exponent d without
knowing p and q, after that you can factor n.

55

Factoring reduces to RSA key recoveryFactoring reduces to RSA key recovery
 The above result also suggests that if you can recover The above result also suggests that if you can recover

arbitrary RSA key pair, you can solve the problem of
factoring n Whenever you get an n you can form anfactoring n. Whenever you get an n, you can form an
RSA system with some e (assuming gcd(e, (n))=1), then

th d t l th i t t d ith tuse your method to solve the private exponent d without
knowing p and q, after that you can factor n.

 Although factoring is believed to be hard, and factoring
breaks RSA breaking RSA does not simplify factoringbreaks RSA, breaking RSA does not simplify factoring.
Trivial non-factoring methods of breaking RSA could
th f i t (Wh t d it b b ki RSA? l i t t

55

therefore exist. (What does it mean by breaking RSA? plaintext
recovery? key recovery?…)

Factoring reduces to RSA key recoveryFactoring reduces to RSA key recovery
 The above result also suggests that if you can recover The above result also suggests that if you can recover

arbitrary RSA key pair, you can solve the problem of
factoring n Whenever you get an n you can form anfactoring n. Whenever you get an n, you can form an
RSA system with some e (assuming gcd(e, (n))=1), then

th d t l th i t t d ith tuse your method to solve the private exponent d without
knowing p and q, after that you can factor n.

 Although factoring is believed to be hard, and factoring
breaks RSA breaking RSA does not simplify factoringbreaks RSA, breaking RSA does not simplify factoring.
Trivial non-factoring methods of breaking RSA could
th f i t (Wh t d it b b ki RSA? l i t t

55

therefore exist. (What does it mean by breaking RSA? plaintext
recovery? key recovery?…) different things

Deterministic EncryptionDeterministic Encryption
 RSA Cryptosystem is a deterministic encryption scheme RSA Cryptosystem is a deterministic encryption scheme,

i.e. a plaintext message is encrypted to a fixed ciphertext
message

56

Deterministic EncryptionDeterministic Encryption
 RSA Cryptosystem is a deterministic encryption scheme RSA Cryptosystem is a deterministic encryption scheme,

i.e. a plaintext message is encrypted to a fixed ciphertext
message

 Suffers from chosen plaintext attack

56

Deterministic EncryptionDeterministic Encryption
 RSA Cryptosystem is a deterministic encryption scheme RSA Cryptosystem is a deterministic encryption scheme,

i.e. a plaintext message is encrypted to a fixed ciphertext
message

 Suffers from chosen plaintext attack
 an attacker compiles a large codebook which contains the

ciphertexts corresponding to all possible plaintext messages

56

Deterministic EncryptionDeterministic Encryption
 RSA Cryptosystem is a deterministic encryption scheme RSA Cryptosystem is a deterministic encryption scheme,

i.e. a plaintext message is encrypted to a fixed ciphertext
message

 Suffers from chosen plaintext attack
 an attacker compiles a large codebook which contains the

ciphertexts corresponding to all possible plaintext messages
 in a two-message scheme, the attacker can always distinguish

which plaintext was transmitted by observing the ciphertext
(does not satisfy the Semantic Security Notation)

56

Deterministic EncryptionDeterministic Encryption
 RSA Cryptosystem is a deterministic encryption scheme RSA Cryptosystem is a deterministic encryption scheme,

i.e. a plaintext message is encrypted to a fixed ciphertext
message

 Suffers from chosen plaintext attack
 an attacker compiles a large codebook which contains the

ciphertexts corresponding to all possible plaintext messages
 in a two-message scheme, the attacker can always distinguish

which plaintext was transmitted by observing the ciphertext
(does not satisfy the Semantic Security Notation)

 Add randomness through padding

56

 Add randomness through padding

RSA PKCS #1 v1 5 paddingRSA PKCS #1 v1.5 padding
 E k 128 b t (1024 bit) PKCS#1 1 5 RSA E.g. k=128 bytes (1024 bits) PKCS#1 v1.5 RSA

57

RSA PKCS #1 v1 5 paddingRSA PKCS #1 v1.5 padding
 E k 128 b t (1024 bit) PKCS#1 1 5 RSA E.g. k=128 bytes (1024 bits) PKCS#1 v1.5 RSA

 plaintext message M (at most 128-3-8=117 bytes)p g (y)

57

RSA PKCS #1 v1 5 paddingRSA PKCS #1 v1.5 padding
 E k 128 b t (1024 bit) PKCS#1 1 5 RSA E.g. k=128 bytes (1024 bits) PKCS#1 v1.5 RSA

 plaintext message M (at most 128-3-8=117 bytes)p g (y)
 pseudorandom nonzero string PS (at least 8 bytes)

57

RSA PKCS #1 v1 5 paddingRSA PKCS #1 v1.5 padding
 E k 128 b t (1024 bit) PKCS#1 1 5 RSA E.g. k=128 bytes (1024 bits) PKCS#1 v1.5 RSA

 plaintext message M (at most 128-3-8=117 bytes)p g (y)
 pseudorandom nonzero string PS (at least 8 bytes)
message to be encrypted m = 00||02||PS||00||Mmessage to be encrypted m 00||02||PS||00||M

57

RSA PKCS #1 v1 5 paddingRSA PKCS #1 v1.5 padding
 E k 128 b t (1024 bit) PKCS#1 1 5 RSA E.g. k=128 bytes (1024 bits) PKCS#1 v1.5 RSA

 plaintext message M (at most 128-3-8=117 bytes)p g (y)
 pseudorandom nonzero string PS (at least 8 bytes)
message to be encrypted m = 00||02||PS||00||Mmessage to be encrypted m 00||02||PS||00||M
 encryption: c me (mod n)

57

RSA PKCS #1 v1 5 paddingRSA PKCS #1 v1.5 padding
 E k 128 b t (1024 bit) PKCS#1 1 5 RSA E.g. k=128 bytes (1024 bits) PKCS#1 v1.5 RSA

 plaintext message M (at most 128-3-8=117 bytes)p g (y)
 pseudorandom nonzero string PS (at least 8 bytes)
message to be encrypted m = 00||02||PS||00||Mmessage to be encrypted m 00||02||PS||00||M
 encryption: c me (mod n)

d ti d (d) decryption: m cd (mod n)

57

RSA PKCS #1 v1 5 paddingRSA PKCS #1 v1.5 padding
 E k 128 b t (1024 bit) PKCS#1 1 5 RSA E.g. k=128 bytes (1024 bits) PKCS#1 v1.5 RSA

 plaintext message M (at most 128-3-8=117 bytes)p g (y)
 pseudorandom nonzero string PS (at least 8 bytes)
message to be encrypted m = 00||02||PS||00||Mmessage to be encrypted m 00||02||PS||00||M
 encryption: c me (mod n)

d ti d (d) decryption: m cd (mod n)

 c is now random corresponding to a fixed m however c is now random corresponding to a fixed m, however,
this only adds difficulties to the compilation of

57

ciphertexts (a factor of 264 times if PS is 8 bytes)

PKCS #1 v2 padding OAEPPKCS #1 v2 padding - OAEP
M: message (emLen-1-2hLen bytes)Seed P M
P: encoding parameters,

an octet string
MGF: mask generation functionHash

Padding Operation
Hash: selected hash function

(hLen is the output bytes)
DB=Hash(P)||PS||01||M
PS i l h LPS is length emLen-

||M||-2hLen-1 null bytes
Seed: hLen random bytes
dbM k MGF(d L hL)MGF

DB

 dbMask: MGF(seed, emLen-hLen)
maskedDB = DB dbMask
seedMask:

MFG(maskedDB hLen)
maskedDB

MGF

MGF

MFG(maskedDB, hLen)

maskedSeed = seed seedMask

EM: encoded message (emLen bytes)

maskedSeed

58

EM: encoded message (emLen bytes)
EM = maskedSeed||makedDBEM

PKCS #1 v2 padding OAEPPKCS #1 v2 padding - OAEP

 Optimal Asymmetric Encryption (OAE)
 M. Bellare, “Optimal Asymmetric Encryption - How to

i hEncrypt with RSA,” Eurocrypt’94

 Optimal Padding in the sense that
RSA-OAEP is semantically secure against adaptive

chosen ciphertext attackers in the random oracle
model

 the message size in a k-bit RSA block is as large as
possible (make the most advantage of the bandwidth)

 Following by more efficient padding schemes:

59

g y p g
OAEP+, SAEP+, REACT

Digital EnvelopDigital Envelop
 Hybrid system (public key and secret key)y y (p y y)

60

Digital EnvelopDigital Envelop
 Hybrid system (public key and secret key)y y (p y y)

RSA is about 1000 times slower than AES

60

Digital EnvelopDigital Envelop
 Hybrid system (public key and secret key)y y (p y y)

RSA is about 1000 times slower than AES
 smaller exponent is faster (but more dangerous) smaller exponent is faster (but more dangerous)

60

Digital EnvelopDigital Envelop
 Hybrid system (public key and secret key)y y (p y y)

RSA is about 1000 times slower than AES
 smaller exponent is faster (but more dangerous) smaller exponent is faster (but more dangerous)

document document documentdocument
plaintext

AESK

document
ciphertext

AESK
-1

document
plaintext

60

Digital EnvelopDigital Envelop
 Hybrid system (public key and secret key)y y (p y y)

RSA is about 1000 times slower than AES
 smaller exponent is faster (but more dangerous) smaller exponent is faster (but more dangerous)

document document documentdocument
plaintext

AESK

document
ciphertext

AESK
-1

document
plaintext

random
128-bit
secret

RSA Enc()
RSA

encrypted

RSA Dec() KOAEP OAEP-1
kZn k

60

key: K
e c yp ed
secret key receiver RSA

private key (n, d)
receiver RSA
public key (n, e)

KEM/DEMKEM/DEM
 Key/Data Encapsulation Mechnism, hybrid schemey p , y
 k K, in a digital envelope scheme, K is a session key,

might get compromized forward security requires OAEP

OAEP

might get compromized, forward security, requires OAEP

secret key: K secret key: K

KDF KDF

RSA Enc()
RSA

t d

RSA Dec()kRZn
k

61

encrypted
secret key material receiver RSA

private key (n, d)
receiver RSA
public key (n, e)KEM

KEM/DEMKEM/DEM
 Key/Data Encapsulation Mechnism, hybrid schemey p , y
 k K, in a digital envelope scheme, K is a session key,

might get compromized forward security requires OAEP

OAEP

might get compromized, forward security, requires OAEP
document
plaintext

AES
document
ciphertext

AES -1

document
plaintext

AESK AESK

secret key: K secret key: K

KDF KDF

RSA Enc()
RSA

t d

RSA Dec()kRZn
k

61

encrypted
secret key material receiver RSA

private key (n, d)
receiver RSA
public key (n, e)KEM

RSA Fast Decryption with CRTRSA Fast Decryption with CRT
 Public key (n, e)y (,)

62

RSA Fast Decryption with CRTRSA Fast Decryption with CRT
 Public key (n, e) n=pꞏq, p and q are large prime integers

d(()) 1 t d d 1 (d ())
y (,)

gcd(e, (n)) = 1 s.t. d, e ꞏ d 1 (mod (n))
(n) = (p-1)(q-1) 3 e n-1

62

RSA Fast Decryption with CRTRSA Fast Decryption with CRT
 Public key (n, e) n=pꞏq, p and q are large prime integers

d(()) 1 t d d 1 (d ())
y (,)

 Private Key (n d) or

gcd(e, (n)) = 1 s.t. d, e ꞏ d 1 (mod (n))
(n) = (p-1)(q-1) 3 e n-1

 Private Key (n, d) or
(n, p, q, dp, dq, qInv)

62

RSA Fast Decryption with CRTRSA Fast Decryption with CRT
 Public key (n, e) n=pꞏq, p and q are large prime integers

d(()) 1 t d d 1 (d ())
y (,)

 Private Key (n d) or

gcd(e, (n)) = 1 s.t. d, e ꞏ d 1 (mod (n))
(n) = (p-1)(q-1) 3 e n-1

 Private Key (n, d) or
(n, p, q, dp, dq, qInv)

e ꞏ dp 1 (mod p-1)
e ꞏ dq 1 (mod q-1)
q ꞏ qInv 1 (mod p)

q qInv 1 (mod p)

62

RSA Fast Decryption with CRTRSA Fast Decryption with CRT
 Public key (n, e) n=pꞏq, p and q are large prime integers

d(()) 1 t d d 1 (d ())
y (,)

 Private Key (n d) or

gcd(e, (n)) = 1 s.t. d, e ꞏ d 1 (mod (n))
(n) = (p-1)(q-1) 3 e n-1

 Private Key (n, d) or
(n, p, q, dp, dq, qInv)

e ꞏ dp 1 (mod p-1)
e ꞏ dq 1 (mod q-1)
q ꞏ qInv 1 (mod p)

 Encryption c me (mod n)

q qInv 1 (mod p)

62

RSA Fast Decryption with CRTRSA Fast Decryption with CRT
 Public key (n, e) n=pꞏq, p and q are large prime integers

d(()) 1 t d d 1 (d ())
y (,)

 Private Key (n d) or

gcd(e, (n)) = 1 s.t. d, e ꞏ d 1 (mod (n))
(n) = (p-1)(q-1) 3 e n-1

 Private Key (n, d) or
(n, p, q, dp, dq, qInv)

e ꞏ dp 1 (mod p-1)
e ꞏ dq 1 (mod q-1)
q ꞏ qInv 1 (mod p)

 Encryption c me (mod n)
 Decryption m cd (mod n) or

q qInv 1 (mod p)

yp ()

62

RSA Fast Decryption with CRTRSA Fast Decryption with CRT
 Public key (n, e) n=pꞏq, p and q are large prime integers

d(()) 1 t d d 1 (d ())
y (,)

 Private Key (n d) or

gcd(e, (n)) = 1 s.t. d, e ꞏ d 1 (mod (n))
(n) = (p-1)(q-1) 3 e n-1

 Private Key (n, d) or
(n, p, q, dp, dq, qInv)

e ꞏ dp 1 (mod p-1)
e ꞏ dq 1 (mod q-1)
q ꞏ qInv 1 (mod p)

 Encryption c me (mod n)
 Decryption m cd (mod n) or

q qInv 1 (mod p)

yp ()
m1 cdp (mod p)

62

RSA Fast Decryption with CRTRSA Fast Decryption with CRT
 Public key (n, e) n=pꞏq, p and q are large prime integers

d(()) 1 t d d 1 (d ())
y (,)

 Private Key (n d) or

gcd(e, (n)) = 1 s.t. d, e ꞏ d 1 (mod (n))
(n) = (p-1)(q-1) 3 e n-1

 Private Key (n, d) or
(n, p, q, dp, dq, qInv)

e ꞏ dp 1 (mod p-1)
e ꞏ dq 1 (mod q-1)
q ꞏ qInv 1 (mod p)

 Encryption c me (mod n)
 Decryption m cd (mod n) or

q qInv 1 (mod p)

yp ()
m1 cdp (mod p)
m cdq (mod q)m2 cdq (mod q)

62

RSA Fast Decryption with CRTRSA Fast Decryption with CRT
 Public key (n, e) n=pꞏq, p and q are large prime integers

d(()) 1 t d d 1 (d ())
y (,)

 Private Key (n d) or

gcd(e, (n)) = 1 s.t. d, e ꞏ d 1 (mod (n))
(n) = (p-1)(q-1) 3 e n-1

 Private Key (n, d) or
(n, p, q, dp, dq, qInv)

e ꞏ dp 1 (mod p-1)
e ꞏ dq 1 (mod q-1)
q ꞏ qInv 1 (mod p)

 Encryption c me (mod n)
 Decryption m cd (mod n) or

q qInv 1 (mod p)

yp ()
m1 cdp (mod p)
m cdq (mod q)m2 cdq (mod q)
h qInv ꞏ (m1-m2) (mod p)

62

RSA Fast Decryption with CRTRSA Fast Decryption with CRT
 Public key (n, e) n=pꞏq, p and q are large prime integers

d(()) 1 t d d 1 (d ())
y (,)

 Private Key (n d) or

gcd(e, (n)) = 1 s.t. d, e ꞏ d 1 (mod (n))
(n) = (p-1)(q-1) 3 e n-1

 Private Key (n, d) or
(n, p, q, dp, dq, qInv)

e ꞏ dp 1 (mod p-1)
e ꞏ dq 1 (mod q-1)
q ꞏ qInv 1 (mod p)

 Encryption c me (mod n)
 Decryption m cd (mod n) or

q qInv 1 (mod p)

yp ()
m1 cdp (mod p)
m cdq (mod q)m2 cdq (mod q)
h qInv ꞏ (m1-m2) (mod p)

62

m m2 + h ꞏ q (mod n)

RSA Fast Decryption with CRTRSA Fast Decryption with CRT
 Public key (n, e) n=pꞏq, p and q are large prime integers

d(()) 1 t d d 1 (d ())
y (,)

 Private Key (n d) or

gcd(e, (n)) = 1 s.t. d, e ꞏ d 1 (mod (n))
(n) = (p-1)(q-1) 3 e n-1

 Private Key (n, d) or
(n, p, q, dp, dq, qInv)

e ꞏ dp 1 (mod p-1)
e ꞏ dq 1 (mod q-1)
q ꞏ qInv 1 (mod p)

 Encryption c me (mod n)
 Decryption m cd (mod n) or

q qInv 1 (mod p)

yp ()
m1 cdp (mod p)
m cdq (mod q)m2 cdq (mod q)
h qInv ꞏ (m1-m2) (mod p)

62

m m2 + h ꞏ q (mod n)CRT

RSA Fast Decryption with CRTRSA Fast Decryption with CRT
 Public key (n, e) n=pꞏq, p and q are large prime integers

d(()) 1 t d d 1 (d ())
y (,)

 Private Key (n d) or

gcd(e, (n)) = 1 s.t. d, e ꞏ d 1 (mod (n))
(n) = (p-1)(q-1) 3 e n-1

 Private Key (n, d) or
(n, p, q, dp, dq, qInv)

e ꞏ dp 1 (mod p-1)
e ꞏ dq 1 (mod q-1)
q ꞏ qInv 1 (mod p)

 Encryption c me (mod n)
 Decryption m cd (mod n) or

q qInv 1 (mod p)

yp ()
m1 cdp (mod p)
m cdq (mod q)

m1 (me)dp meꞏdp m (mod p)

m2 cdq (mod q)
h qInv ꞏ (m1-m2) (mod p)

62

m m2 + h ꞏ q (mod n)CRT

RSA Fast Decryption with CRTRSA Fast Decryption with CRT
 Public key (n, e) n=pꞏq, p and q are large prime integers

d(()) 1 t d d 1 (d ())
y (,)

 Private Key (n d) or

gcd(e, (n)) = 1 s.t. d, e ꞏ d 1 (mod (n))
(n) = (p-1)(q-1) 3 e n-1

 Private Key (n, d) or
(n, p, q, dp, dq, qInv)

e ꞏ dp 1 (mod p-1)
e ꞏ dq 1 (mod q-1)
q ꞏ qInv 1 (mod p)

 Encryption c me (mod n)
 Decryption m cd (mod n) or

q qInv 1 (mod p)

yp ()
m1 cdp (mod p)
m cdq (mod q)

m1 (me)dp meꞏdp m (mod p)

m2 (me)dq meꞏdq m (mod q)m2 cdq (mod q)
h qInv ꞏ (m1-m2) (mod p)

m2 (m) q m q m (mod q)

62

m m2 + h ꞏ q (mod n)CRT

RSA Fast Decryption with CRTRSA Fast Decryption with CRT
 Public key (n, e) n=pꞏq, p and q are large prime integers

d(()) 1 t d d 1 (d ())
y (,)

 Private Key (n d) or

gcd(e, (n)) = 1 s.t. d, e ꞏ d 1 (mod (n))
(n) = (p-1)(q-1) 3 e n-1

 Private Key (n, d) or
(n, p, q, dp, dq, qInv)

e ꞏ dp 1 (mod p-1)
e ꞏ dq 1 (mod q-1)
q ꞏ qInv 1 (mod p)

 Encryption c me (mod n)
 Decryption m cd (mod n) or

q qInv 1 (mod p)

yp ()
m1 cdp (mod p)
m cdq (mod q)

m1 (me)dp meꞏdp m (mod p)

m2 (me)dq meꞏdq m (mod q)m2 cdq (mod q)
h qInv ꞏ (m1-m2) (mod p)

m2 (m) q m q m (mod q)

62

m m2 + h ꞏ q (mod n)CRT m m2 (mod q) and
m m2 + qInv ꞏ (m1-m2) ꞏ q m1 (mod p)

Multi Prime RSAMulti-Prime RSA
 RSA PKCS#1 v2.0 Amendment 1

63

Multi Prime RSAMulti-Prime RSA
 RSA PKCS#1 v2.0 Amendment 1
 the modulus n may have more than two prime factors

63

Multi Prime RSAMulti-Prime RSA
 RSA PKCS#1 v2.0 Amendment 1
 the modulus n may have more than two prime factors
 only private key operations and representations are y p y p p

affected (p, q, dp, dq, qInv) (ri, di, ti)

63

Multi Prime RSAMulti-Prime RSA
 RSA PKCS#1 v2.0 Amendment 1
 the modulus n may have more than two prime factors
 only private key operations and representations are y p y p p

affected (p, q, dp, dq, qInv) (ri, di, ti)
 n = r1ꞏr2ꞏ…ꞏrk, k2, where r1 = p, r2=q

63

Multi Prime RSAMulti-Prime RSA
 RSA PKCS#1 v2.0 Amendment 1
 the modulus n may have more than two prime factors
 only private key operations and representations are y p y p p

affected (p, q, dp, dq, qInv) (ri, di, ti)
 n = r1ꞏr2ꞏ…ꞏrk, k2, where r1 = p, r2=q
 e ꞏ di1(mod ri-1), i=3,…k

63

Multi Prime RSAMulti-Prime RSA
 RSA PKCS#1 v2.0 Amendment 1
 the modulus n may have more than two prime factors
 only private key operations and representations are y p y p p

affected (p, q, dp, dq, qInv) (ri, di, ti)
 n = r1ꞏr2ꞏ…ꞏrk, k2, where r1 = p, r2=q
 e ꞏ di1(mod ri-1), i=3,…k
 r1 ꞏ r2 ꞏ … ꞏ ri-1 ꞏ ti1 (mod ri) i=3,…k

63

Multi Prime RSAMulti-Prime RSA
 RSA PKCS#1 v2.0 Amendment 1
 the modulus n may have more than two prime factors
 only private key operations and representations are y p y p p

affected (p, q, dp, dq, qInv) (ri, di, ti)
 n = r1ꞏr2ꞏ…ꞏrk, k2, where r1 = p, r2=q
 e ꞏ di1(mod ri-1), i=3,…k
 r1 ꞏ r2 ꞏ … ꞏ ri-1 ꞏ ti1 (mod ri) i=3,…k

 Decryption:

63

Multi Prime RSAMulti-Prime RSA
 RSA PKCS#1 v2.0 Amendment 1
 the modulus n may have more than two prime factors
 only private key operations and representations are y p y p p

affected (p, q, dp, dq, qInv) (ri, di, ti)
 n = r1ꞏr2ꞏ…ꞏrk, k2, where r1 = p, r2=q
 e ꞏ di1(mod ri-1), i=3,…k
 r1 ꞏ r2 ꞏ … ꞏ ri-1 ꞏ ti1 (mod ri) i=3,…k

 Decryption:
1. m1 cdp (mod p)
2 m cdq (mod q)2. m2 cdq (mod q)
3. if k>2 mi cdi (mod ri), i=3,…, k
4. h (m1 - m2) qInv (mod p)

63

Multi Prime RSAMulti-Prime RSA
 RSA PKCS#1 v2.0 Amendment 1
 the modulus n may have more than two prime factors
 only private key operations and representations are y p y p p

affected (p, q, dp, dq, qInv) (ri, di, ti)
 n = r1ꞏr2ꞏ…ꞏrk, k2, where r1 = p, r2=q
 e ꞏ di1(mod ri-1), i=3,…k
 r1 ꞏ r2 ꞏ … ꞏ ri-1 ꞏ ti1 (mod ri) i=3,…k

 Decryption:
1. m1 cdp (mod p)
2 m cdq (mod q)

5. m = m2 + q ꞏ h
6. if k>2, R= r1, for k=3 to k do

R R2. m2 cdq (mod q)
3. if k>2 mi cdi (mod ri), i=3,…, k
4. h (m1 - m2) qInv (mod p)

a. R = R ꞏ ri-1
b. h (mi-m) ꞏ ti (mod ri)
c. m = m + R ꞏ h

63

Multi Prime RSAMulti-Prime RSA
 RSA PKCS#1 v2.0 Amendment 1
 the modulus n may have more than two prime factors
 only private key operations and representations are y p y p p

affected (p, q, dp, dq, qInv) (ri, di, ti)
 n = r1ꞏr2ꞏ…ꞏrk, k2, where r1 = p, r2=q
 e ꞏ di1(mod ri-1), i=3,…k
 r1 ꞏ r2 ꞏ … ꞏ ri-1 ꞏ ti1 (mod ri) i=3,…k

 Decryption:
1. m1 cdp (mod p)
2 m cdq (mod q)

5. m = m2 + q ꞏ h
6. if k>2, R= r1, for k=3 to k do

R R2. m2 cdq (mod q)
3. if k>2 mi cdi (mod ri), i=3,…, k
4. h (m1 - m2) qInv (mod p)

a. R = R ꞏ ri-1
b. h (mi-m) ꞏ ti (mod ri)
c. m = m + R ꞏ h

63

 advantages: lower computational cost for the decryption
(and signature) primitives if CRT is used (also see 6.8.14)

Factoring & RSA TimelineFactoring & RSA Timeline

Rabin’s variant
of RSA [Rab79] Montgomery’s Method [M85]

OAEP invented
[BR94]

Fi t Sh i ID
PKCS #1 v1
published

Fast Hardware
implementation
of RSA [SV93]

Chinese Remainder
Theorem efficiency
result [QC82]

Public Exponent
3 attack [Has88] PSS invented

[BR96]

Fiat-Shamir ID
scheme [FS86]

ANSI X9.31
adopted

published

1976 19981980 1990 [BR96]

RSA Cryptosystem
invented [RSA78]

RSA Factoring
Challenge started

Related Message
attack [CFPR96]

Bit Security result
for RSA [ACGS84] ISO/IEC 9796

Multiple Polynomial
Quadratic Sieve [Sil87]

General Number
Field Sieve [BLP94]
[BLZ94]

for RSA [ACGS84]

PKCS #1 v2
published

ISO/IEC 9796
published

64

Alternative PKC’sAlternative PKC s
 ElGamal Cryptosystem (Discrete-log based)

65

Alternative PKC’sAlternative PKC s
 ElGamal Cryptosystem (Discrete-log based)

 Also suffers from long keys

65

Alternative PKC’sAlternative PKC s
 ElGamal Cryptosystem (Discrete-log based)

 Also suffers from long keys

 NTRU (Lattice based)()

65

Alternative PKC’sAlternative PKC s
 ElGamal Cryptosystem (Discrete-log based)

 Also suffers from long keys

 NTRU (Lattice based)()
 Utilizes short keys

65

Alternative PKC’sAlternative PKC s
 ElGamal Cryptosystem (Discrete-log based)

 Also suffers from long keys

 NTRU (Lattice based)()
 Utilizes short keys
 Proprietary (License issues prevent from wide implementation) Proprietary (License issues prevent from wide implementation)

65

Alternative PKC’sAlternative PKC s
 ElGamal Cryptosystem (Discrete-log based)

 Also suffers from long keys

 NTRU (Lattice based)()
 Utilizes short keys
 Proprietary (License issues prevent from wide implementation) Proprietary (License issues prevent from wide implementation)
 Recently, a weakness found in the signature scheme

65

Alternative PKC’sAlternative PKC s
 ElGamal Cryptosystem (Discrete-log based)

 Also suffers from long keys

 NTRU (Lattice based)()
 Utilizes short keys
 Proprietary (License issues prevent from wide implementation) Proprietary (License issues prevent from wide implementation)
 Recently, a weakness found in the signature scheme

 Elliptic Curve Cryptosystems Elliptic Curve Cryptosystems

65

Alternative PKC’sAlternative PKC s
 ElGamal Cryptosystem (Discrete-log based)

 Also suffers from long keys

 NTRU (Lattice based)()
 Utilizes short keys
 Proprietary (License issues prevent from wide implementation) Proprietary (License issues prevent from wide implementation)
 Recently, a weakness found in the signature scheme

 Elliptic Curve Cryptosystems Elliptic Curve Cryptosystems
 Emerging public key cryptography standard for constrained

devicesdevices.

65

Alternative PKC’sAlternative PKC s
 ElGamal Cryptosystem (Discrete-log based)

 Also suffers from long keys

 NTRU (Lattice based)()
 Utilizes short keys
 Proprietary (License issues prevent from wide implementation) Proprietary (License issues prevent from wide implementation)
 Recently, a weakness found in the signature scheme

 Elliptic Curve Cryptosystems Elliptic Curve Cryptosystems
 Emerging public key cryptography standard for constrained

devicesdevices.

 Paillier Cryptosystem (High order composite residue based)

65

Alternative PKC’sAlternative PKC s
 ElGamal Cryptosystem (Discrete-log based)

 Also suffers from long keys

 NTRU (Lattice based)()
 Utilizes short keys
 Proprietary (License issues prevent from wide implementation) Proprietary (License issues prevent from wide implementation)
 Recently, a weakness found in the signature scheme

 Elliptic Curve Cryptosystems Elliptic Curve Cryptosystems
 Emerging public key cryptography standard for constrained

devicesdevices.

 Paillier Cryptosystem (High order composite residue based)

G ld Mi li C
65

 Goldwasser-Micali Cryptosystem (QR based)

Alternative PKC’sAlternative PKC s
 ElGamal Cryptosystem (Discrete-log based)

 Also suffers from long keys

 NTRU (Lattice based)()
 Utilizes short keys
 Proprietary (License issues prevent from wide implementation) Proprietary (License issues prevent from wide implementation)
 Recently, a weakness found in the signature scheme

 Elliptic Curve Cryptosystems Elliptic Curve Cryptosystems
 Emerging public key cryptography standard for constrained

devicesdevices.

 Paillier Cryptosystem (High order composite residue based)

G ld Mi li C
65

 Goldwasser-Micali Cryptosystem (QR based)
 very low efficiency

