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3. Every possible subset sum is unique
pf: given x, assume x = 　 aj = aj, where S 　T, assume max{aj} 　

max{aj} …. jS jT jS jT
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is an NP-complete problem, e.g. 94 = 11 + 14 + 69
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m cd (mod n)^
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complex key generation schemecomplex key generation scheme,
deterministic encryption

 For acceptable level of security in commercial applications, 1024-p y pp ,
bit (300 digits) keys are used.  For a symmetric key system with 
comparable security, about 100 bits keys are used.
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format) for Bob
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 Alice represents the message as an integer m in the 

interval [0, n -1]
Ali t th d l Alice computes the modular square 

c  m2 (mod n)
 Alice sends the ciphertext c to Bob Alice sends the ciphertext c to Bob
 Bob decrypts c using his private key p and q

B b t th f t   i CRT Bob computes the four square roots m1, m2 using CRT, 
one of them satisfying the fixed message format is the 

d
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 The range covers all the quadratic residues (for a prime The range covers all the quadratic residues. (for a prime 
modulus, the number of quadratic residues in Zp

* is 
(p-1)/2; for a composite integer n=pꞏq, the number of quadratic (p ) ; p g p q, q
residues in Zn

* is (p-1)(q-1)/4)
 In order to let the Rabin function have inverse, it is necessary y

to make the Rabin function a permutation, ie. 1-1 and onto.  
Therefore, the number of elements in the domain of the Rabin 
f ti h ld l b ( 1)( 1)/4 f Th 4function should also be (p-1)(q-1)/4 for n=pꞏq.  There are 4 
possible numbers with their square equal to y, and we have to 
make 3 of them illegal
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* is (p-1)(q-1)/4

pf: find a common primitive in Z * and Z * g at least {g2 g4pf:  find a common primitive in Zp and Zq g, at least {g , g , …,
gp-1 …, gq-1 …, g(n)} are QRn’s, where (n) = lcm(p-1,q-1) can be
as large as (p-1)(q-1)/2, this set has (p-1)(q-1)/4 distinct elements
assume there are (p-1)(q-1)/4+1 QRn’s in Zn

*, since there are four
square roots of a QR modulo pꞏq, these QRn’s have (p-1)(q-1)+4

t i t t l Th t b t d l t i
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square roots in total. There must be some repeated elements in 
this QRn, therefore, there are at most (p-1)(q-1)/4 QRn’s in Zn

*



Matlab examplesMatlab examples
 maple('p:= nextprime(189734535789)')       % 189734535811 = 4 k + 3
























20







Matlab examplesMatlab examples
 maple('p:= nextprime(189734535789)')       % 189734535811 = 4 k + 3
 maple('p mod 4') maple( p mod 4 )






















20







Matlab examplesMatlab examples
 maple('p:= nextprime(189734535789)')       % 189734535811 = 4 k + 3
 maple('p mod 4') maple( p mod 4 )
 maple('q:= nextprime(27847815934897)')   % 27847815934931 = 4 k + 3




















20







Matlab examplesMatlab examples
 maple('p:= nextprime(189734535789)')       % 189734535811 = 4 k + 3
 maple('p mod 4') maple( p mod 4 )
 maple('q:= nextprime(27847815934897)')   % 27847815934931 = 4 k + 3
 maple('q mod 4')


















20







Matlab examplesMatlab examples
 maple('p:= nextprime(189734535789)')       % 189734535811 = 4 k + 3
 maple('p mod 4') maple( p mod 4 )
 maple('q:= nextprime(27847815934897)')   % 27847815934931 = 4 k + 3
 maple('q mod 4')
 maple('n:=p*q'); maple( n: p q );
















20







Matlab examplesMatlab examples
 maple('p:= nextprime(189734535789)')       % 189734535811 = 4 k + 3
 maple('p mod 4') maple( p mod 4 )
 maple('q:= nextprime(27847815934897)')   % 27847815934931 = 4 k + 3
 maple('q mod 4')
 maple('n:=p*q'); maple( n: p q );
 maple('x:=070411111422141711030000')   % text2int(‘helloworld’)














20







Matlab examplesMatlab examples
 maple('p:= nextprime(189734535789)')       % 189734535811 = 4 k + 3
 maple('p mod 4') maple( p mod 4 )
 maple('q:= nextprime(27847815934897)')   % 27847815934931 = 4 k + 3
 maple('q mod 4')
 maple('n:=p*q'); maple( n: p q );
 maple('x:=070411111422141711030000')   % text2int(‘helloworld’)
 maple('c:= x&^2 mod n')













20







Matlab examplesMatlab examples
 maple('p:= nextprime(189734535789)')       % 189734535811 = 4 k + 3
 maple('p mod 4') maple( p mod 4 )
 maple('q:= nextprime(27847815934897)')   % 27847815934931 = 4 k + 3
 maple('q mod 4')
 maple('n:=p*q'); maple( n: p q );
 maple('x:=070411111422141711030000')   % text2int(‘helloworld’)
 maple('c:= x&^2 mod n')

 maple('c1:= c mod p')










20







Matlab examplesMatlab examples
 maple('p:= nextprime(189734535789)')       % 189734535811 = 4 k + 3
 maple('p mod 4') maple( p mod 4 )
 maple('q:= nextprime(27847815934897)')   % 27847815934931 = 4 k + 3
 maple('q mod 4')
 maple('n:=p*q'); maple( n: p q );
 maple('x:=070411111422141711030000')   % text2int(‘helloworld’)
 maple('c:= x&^2 mod n')

 maple('c1:= c mod p')
 maple('r1:= c1&^((p+1)/4) mod p')              % maple('r1&^2 mod p')









20







Matlab examplesMatlab examples
 maple('p:= nextprime(189734535789)')       % 189734535811 = 4 k + 3
 maple('p mod 4') maple( p mod 4 )
 maple('q:= nextprime(27847815934897)')   % 27847815934931 = 4 k + 3
 maple('q mod 4')
 maple('n:=p*q'); maple( n: p q );
 maple('x:=070411111422141711030000')   % text2int(‘helloworld’)
 maple('c:= x&^2 mod n')

 maple('c1:= c mod p')
 maple('r1:= c1&^((p+1)/4) mod p')              % maple('r1&^2 mod p')

 maple('c2:= c mod q')






20







Matlab examplesMatlab examples
 maple('p:= nextprime(189734535789)')       % 189734535811 = 4 k + 3
 maple('p mod 4') maple( p mod 4 )
 maple('q:= nextprime(27847815934897)')   % 27847815934931 = 4 k + 3
 maple('q mod 4')
 maple('n:=p*q'); maple( n: p q );
 maple('x:=070411111422141711030000')   % text2int(‘helloworld’)
 maple('c:= x&^2 mod n')

 maple('c1:= c mod p')
 maple('r1:= c1&^((p+1)/4) mod p')              % maple('r1&^2 mod p')

 maple('c2:= c mod q')
 maple('r2:= c2&^((q+1)/4) mod q')              % maple('r2&^2 mod q')





20







Matlab examplesMatlab examples
 maple('p:= nextprime(189734535789)')       % 189734535811 = 4 k + 3
 maple('p mod 4') maple( p mod 4 )
 maple('q:= nextprime(27847815934897)')   % 27847815934931 = 4 k + 3
 maple('q mod 4')
 maple('n:=p*q'); maple( n: p q );
 maple('x:=070411111422141711030000')   % text2int(‘helloworld’)
 maple('c:= x&^2 mod n')

 maple('c1:= c mod p')
 maple('r1:= c1&^((p+1)/4) mod p')              % maple('r1&^2 mod p')

 maple('c2:= c mod q')
 maple('r2:= c2&^((q+1)/4) mod q')              % maple('r2&^2 mod q')

 maple('m1:= chrem([r1, r2], [p, q])')    % 3704440302544264662351219


20







Matlab examplesMatlab examples
 maple('p:= nextprime(189734535789)')       % 189734535811 = 4 k + 3
 maple('p mod 4') maple( p mod 4 )
 maple('q:= nextprime(27847815934897)')   % 27847815934931 = 4 k + 3
 maple('q mod 4')
 maple('n:=p*q'); maple( n: p q );
 maple('x:=070411111422141711030000')   % text2int(‘helloworld’)
 maple('c:= x&^2 mod n')

 maple('c1:= c mod p')
 maple('r1:= c1&^((p+1)/4) mod p')              % maple('r1&^2 mod p')

 maple('c2:= c mod q')
 maple('r2:= c2&^((q+1)/4) mod q')              % maple('r2&^2 mod q')

 maple('m1:= chrem([r1, r2], [p, q])')    % 3704440302544264662351219
 maple('m2:= chrem([-r1, r2], [p, q])')   % 70411111422141711030000

20







Matlab examplesMatlab examples
 maple('p:= nextprime(189734535789)')       % 189734535811 = 4 k + 3
 maple('p mod 4') maple( p mod 4 )
 maple('q:= nextprime(27847815934897)')   % 27847815934931 = 4 k + 3
 maple('q mod 4')
 maple('n:=p*q'); maple( n: p q );
 maple('x:=070411111422141711030000')   % text2int(‘helloworld’)
 maple('c:= x&^2 mod n')

 maple('c1:= c mod p')
 maple('r1:= c1&^((p+1)/4) mod p')              % maple('r1&^2 mod p')

 maple('c2:= c mod q')
 maple('r2:= c2&^((q+1)/4) mod q')              % maple('r2&^2 mod q')

 maple('m1:= chrem([r1, r2], [p, q])')    % 3704440302544264662351219
 maple('m2:= chrem([-r1, r2], [p, q])')   % 70411111422141711030000

20

 maple('m3:= chrem([r1, -r2], [p, q])')   % 5213281318342160554284041




Matlab examplesMatlab examples
 maple('p:= nextprime(189734535789)')       % 189734535811 = 4 k + 3
 maple('p mod 4') maple( p mod 4 )
 maple('q:= nextprime(27847815934897)')   % 27847815934931 = 4 k + 3
 maple('q mod 4')
 maple('n:=p*q'); maple( n: p q );
 maple('x:=070411111422141711030000')   % text2int(‘helloworld’)
 maple('c:= x&^2 mod n')

 maple('c1:= c mod p')
 maple('r1:= c1&^((p+1)/4) mod p')              % maple('r1&^2 mod p')

 maple('c2:= c mod q')
 maple('r2:= c2&^((q+1)/4) mod q')              % maple('r2&^2 mod q')

 maple('m1:= chrem([r1, r2], [p, q])')    % 3704440302544264662351219
 maple('m2:= chrem([-r1, r2], [p, q])')   % 70411111422141711030000
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 maple('m3:= chrem([r1, -r2], [p, q])')   % 5213281318342160554284041
 maple('m4:= chrem([-r1, -r2], [p, q])')  % 1579252127220037602962822
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will be illustrated later after factorization

 If we have the private exponent d, we can factor the modulus.
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knowing p and q  factoring n
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• you can solve y  x1
2 (mod p) and y  x2

2 (mod q) easily



• using CRT you can find x which is f -1(y)


• given a quadratic residue y if you can find the four 
square roots x1 and x2 for y in polynomial time

f b i d( ) d d( )
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• you can factor n by trying gcd(x1-x2, n) and gcd(x1+x2, n)



Basic Factoring Principle (1/4)Basic Factoring Principle (1/4)
 Let n be an integer and suppose there exist integers x and y with g pp g y

x2  y2 (mod n), but x  y (mod n).  Then  n is composite, 
 both gcd(x-y, n) and gcd(x+y, n) are nontrivial factors of n.
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Case 1 and 2 implies that 1 < d < n  
i.e.  d must be a nontrivial factor of n
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Basic Factoring Principle (2/4)Basic Factoring Principle (2/4)
 x2  y2 (mod p) implies x  y (mod p) since p | (x+y)(x-y) 
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i.e. x  -y (mod p) or x  y (mod p)
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 Case 4 leads to the factorization of n, i.e. gcd(x+y, n) = q and 

gcd(x-y, n) = p
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 as long as we have z (where z  y), we can factor n into 
gcd(y-z, n) and gcd(y+z, n)
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with respect to base a
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if b1  -1 (mod n), stop, n is probably prime
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……..
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n-1 = 2k ꞏ m
 and  are not true, 

bi  -1 (mod n), i=1,2,…k
all subsequent b  1 (mod n)

b0  am (mod n)
b1  a2ꞏm (mod n)

all subsequent bj  1 (mod n), 
there is no chance to use
Basic Factoring Principle, abortbk  a2kꞏm  an-1 (mod n)

…

Consider 4 possible cases:
 b0  1 (mod n)

ll b 1 ( d ) i 1 2 k

g p
, , and  are not true, 

bk  an-1 (mod n)
all bi  1 (mod n), i=1,2,…k
there is no chance to use
Basic Factoring Principle abort

k

if bk  1 (mod n) n is composite 
since if n is prime, bk  1 (mod n)Basic Factoring Principle, abort

 is not true, 
bi-1  1 (mod n) and

( bk  1 (mod n) is covered by  )
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Basic Factoring Principle applied, composite
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When/How does Basic Factoring 
P i i l k i M R t t?Principle work in M-R test?

 When:

If i t i ti b n-1 ( d ) b t ft

2
 When: 

 explicitly: bi-1  ±1 (mod n) and bi  bi-1  1 (mod n)
If n is not prime, sometimes bk  an-1 (mod n) but often
bk  ar(n) (mod n)  as in universal exponent factoring

 How:

2 2

 How:
 implicitly: let p | n and q | n    (p, q be two factors of n)

2 2bi-1  1 (mod p) and bi-1  1 (mod q)
but either bi-1 1 (mod p) or bi-1 1 (mod q)

 catching the moment that b0, b1, … behave differently 
while taking square in (mod p) component and (mod q)

i 1 i 1 
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A Carmichael number: pass 
the Fermat test for all bases
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Pse do Prime and Strong Pse do PrimePseudo Prime and Strong Pseudo Prime
 If n is not a prime but satisfies an-1  1 (mod n) we If n is not a prime but satisfies a 1 (mod n) we 

say that n is a pseudo prime number for base a.
 2560 1 ( d 561) e.g. 2560  1 (mod 561) 

 If n is not a prime but passes the Miller-Rabin test 
with base a (without being identified as a 
composite), we say that n is a strong pseudo primecomposite), we say that n is a strong pseudo prime 
number for base a.   
U t 1010 th 455052511 i th Up to 1010, there are 455052511 primes, there are 
14884 pseudo prime numbers for the base 2, and 

32

3291 strong pseudo prime numbers for the base 2



Fermat and Miller Rabin TestFermat and Miller-Rabin Test
 Both of these two tests are for identifying subsets of y g

composite numbers

I: integers

SPPa: strong pseudo prime
numbers for base a,

P: prime

I: integers the set of composite n 
where M-T test says
‘probably prime’

SPPa

P: prime
numbers

C: composite
numbers

probably prime
PPa

I = P  C numbers

PPa: pseudo prime
C = SPPa  SPPa

= PP  PP numbers for base a,
the set of composite
n where an-11(mod n)t i t

 PPa  PPa

SPPa  PPa
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n where a 1(mod n): mysterious part
not prime, but cannot be identified as compositePPa  SPPa  C



Composite WitnessComposite Witness
 Note that the M-R test and probably together with the Lucas test 

leave the strong pseudo prime number an extremely small set.
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 A composite number will be factored out by the M-R test only if it 
is a pseudo prime but it is not a strong pseudo prime number.
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a(p-1)(q-1)  1 (mod n)
alcm(p-1, q-1)  1 (mod n)
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 Complexity was like O(n12), though it’s been slightly reduced since then

 Does this meant that RSA was broken? Does this meant that RSA was broken?
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efficient than the IIT algorithm so we’ll keep using those
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 maple('a:=nextprime(189734535789)') 
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 if n is a pseudoprime and not a strong pseudoprime, 
Miller-Rabin test can factor it.  about 10-6 chance
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 Exponent factorization even if r is valid for one a, you can still 
try the above procedure



p 1 factoring (1/2)p-1 factoring (1/2)
 If one of the prime factors of n has a special property, it is p p p p y

sometimes easier to factor n.
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If n=pꞏq, p-1 and q-1 both have small factors that are less than B, then gcd(b-1,n)=n, 
(useless) however, b aB! 1 (mod n) and we can use the Universal exponent method



p 1 factoring (2/2)p-1 factoring (2/2)
 How do we choose B?
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Elliptic curve factorization method, Lenstra, 1985
 Best records: p-1: 34 digits (113 bits), ECM: 47 digits (143 bits)



Quadratic Sieve (1/4)Quadratic Sieve (1/4)
 Example: factor n = 3837523p
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k h b



make the number 
of each factors even
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 Example: factor n = 3837523p
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individual factors are small
( )

190952  22 ꞏ 5 ꞏ 11 ꞏ 13 ꞏ 19 (mod 3837523)
19642  32 ꞏ 133 (mod 3837523)
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Quadratic Sieve (1/4)Quadratic Sieve (1/4)
 Example: factor n = 3837523p

 form the following relations
93982  55 ꞏ 19 (mod 3837523)

individual factors are small
( )
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19642  32 ꞏ 133 (mod 3837523)

k h b170782  26 ꞏ 32 ꞏ 11 (mod 3837523)
 multiply the above relations

make the number 
of each factors even

(9398 ꞏ 19095 ꞏ 1964 ꞏ 17078)2  (24 ꞏ 32 ꞏ 53 ꞏ 11 ꞏ 132 ꞏ 19)2

22303872  25867052

 since 2230387  2586705 (mod 3837523)
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Quadratic Sieve (1/4)Quadratic Sieve (1/4)
 Example: factor n = 3837523p

 form the following relations
93982  55 ꞏ 19 (mod 3837523)

individual factors are small
( )

190952  22 ꞏ 5 ꞏ 11 ꞏ 13 ꞏ 19 (mod 3837523)
19642  32 ꞏ 133 (mod 3837523)

k h b170782  26 ꞏ 32 ꞏ 11 (mod 3837523)
 multiply the above relations

make the number 
of each factors even

(9398 ꞏ 19095 ꞏ 1964 ꞏ 17078)2  (24 ꞏ 32 ꞏ 53 ꞏ 11 ꞏ 132 ꞏ 19)2

22303872  25867052 hope they are not equal
 since 2230387  2586705 (mod 3837523)
 gcd(2230387-2586705, 3837523) = 1093 is one factor of n

h h f i 3837523/1093 3511

45

 the other factor is 3837523/1093 = 3511



Quadratic Sieve (2/4)Quadratic Sieve  (2/4)
 Quadratic?           x2  product of small primesQ p p
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 Properties of these relations:p

 product of small primes called factor base
 make all prime factors appear even times
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Quadratic Sieve (2/4)Quadratic Sieve  (2/4)
 Quadratic?           x2  product of small primesQ p p
 How do we construct these useful relations systematically?
 Properties of these relations:p

 product of small primes called factor base
 make all prime factors appear even times

h l i i i Put these relations in a matrix
2 3 5 7 1311 1917
0 0 5 0 0 0 0 19398

19095
1964

0 0 5 0 0 0 0 1
2 0 1 0 1 1 0 1
0 2 0 0 0 3 0 01964

17078
8077

6 2 0 0 1 0 0 0
0 2 0 0 0 3 0 0

1 0 0 0 0 0 0 1

46
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5 0 1 0 0 2 0 0
0 0 2 2 0 1 0 0



Quadratic Sieve (2/4)Quadratic Sieve  (2/4)
 Quadratic?           x2  product of small primesQ p p
 How do we construct these useful relations systematically?
 Properties of these relations:p
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9398 =     23n + 4

,
not be too large. However, there
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takes time.  Also, there are a lot
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of other methods to generate 
qualified x values.
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 found 569466 ‘x2small products’ equations, out of which only 205 linear 

dependencies were found
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1964 201964
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20
45
711984

1994
1999
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129   (429 bits)
155 (515 bi )1999 155   (515 bits)

2003 174   (576 bits)
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Factorization RecordsFactorization Records
Year Number of digits

1964 201964
1974
1984

20
45
711984

1994
1999

71
129   (429 bits)
155 (515 bi )1999 155   (515 bits)

2003 174   (576 bits)

31074182404900437213507500358885679300373460228427
27545720161948823206440518081504556346829671723286

Next challenge
RSA-640
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 If we have the private exponent d, we can factor the modulus.
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Factoring reduces to RSA key recoveryFactoring reduces to RSA key recovery
 DeLaurentis, “A Further Weakness in the Common 

Modulus Protocol for the RSA Cryptosystem,” 
Cryptologia, Vol. 8, pp. 253-259, 1984yp g pp
 If you have a pair of RSA public-key/private-key, you can 

factoring n=pꞏq with a probabilistic algorithm.
 An example of the Universal Exponent Factorization method

 Basic idea: find a number b, 0<b<n s.t.,
b2  1 (mod n) and b  1 (mod n)     i.e. 1<b<n-1
 Note: There are four roots to the equation b2  1 (mod n) Note: There are four roots to the equation b  1 (mod n),  
1 are two of them, all satisfy (b+1)(b-1) = kꞏn = kꞏpꞏq, 
since 0<b-1<b+1<n, we have either (p | b-1 and q | b+1) or 
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, (p | q | )
(q | b-1 and p | b+1), therefore, one of the factor can be found 
by gcd(b-1,n) and the other by n/gcd(b-1,n) or gcd(b+1,n)
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3. b = a
2j-1h, if b  -1 (mod n), then gcd(b-1, n) is the result, else 
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the probability that b=1 b=-1 b=c(1) or b=-c(1) would bethe probability that b 1, b 1, b c(1), or b c(1) would be 
equal; Pr{success}=Pr{a

2j-1h 1}=1/2
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53







Factoring red ces to RSA ke reco erFactoring reduces to RSA key recovery
 Algorithm to find b:  Pr{success per repetition} = ½ 

1. Randomly choose a, 1<a<n-1, such that gcd(a, n) = 1

2 Find minimal j 2jh  1 (mod n) (where h satisfies e ꞏ d 1 = 2th)2. Find minimal j, a
j  1 (mod n)  (where h satisfies e ꞏ d - 1 = 2 h)

3. b = a
2j-1h, if b  -1 (mod n), then gcd(b-1, n) is the result, else 

repeat 1-3p

 Note: If we randomly choose bZn
* and find out that b2  1 (mod n), 

the probability that b=1 b=-1 b=c(1) or b=-c(1) would bethe probability that b 1, b 1, b c(1), or b c(1) would be 
equal; Pr{success}=Pr{a

2j-1h 1}=1/2

 Ex: p=131 q=199 n=pꞏq=26069 e=7 d=22063 Ex: p=131, q=199, n=pꞏq=26069, e=7, d=22063

(n)=(p-1)(q-1) =25740=22*6435 | ed-1=154440 = 23*19305,

53

choose a=3, try j=1 (32119305=1), b= a
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choose a=3, try j=1 (32119305=1), b= a
2j-1h= 319305 = 5372 ( 1)

p = gcd(b-1,n) = gcd(5371,26069) = 131, q = n/p = 199



Factoring reduces to RSA key recoveryFactoring reduces to RSA key recovery

 The above result says that “if you can recover a pair of 
RSA keys, you can factoring the corresponding n=p ꞏ q” 
i.e. “once a private key d is compromised, you need to 
choose a new pair of (n, e) instead of changing e only”
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Factoring reduces to RSA key recoveryFactoring reduces to RSA key recovery

 The above result says that “if you can recover a pair of 
RSA keys, you can factoring the corresponding n=p ꞏ q” 
i.e. “once a private key d is compromised, you need to 
choose a new pair of (n, e) instead of changing e only”

Th b lt t th t h i ( ) ( The above result suggests that a scheme using (n, e1), (n, 
e2), … (n, ek) with a common n for each k participants 

ith t i i h th l f i iwithout giving each one the value of p, q is insecure.  
You should not use the same n as some others even 
th h t li itl t ld th l f d
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though you are not explicitly told the value of p and q.



Factoring reduces to RSA key recoveryFactoring reduces to RSA key recovery
 The above result also suggests that if you can recover The above result also suggests that if you can recover 

arbitrary RSA key pair, you can solve the problem of 
factoring n Whenever you get an n you can form anfactoring n.  Whenever you get an n, you can form an 
RSA system with some e (assuming gcd(e, (n))=1), then 

th d t l th i t t d ith tuse your method to solve the private exponent d without 
knowing p and q, after that you can factor n.
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 Although factoring is believed to be hard, and factoring 
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th f i t (Wh t d it b b ki RSA? l i t t
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therefore exist. (What does it mean by breaking RSA? plaintext 
recovery? key recovery?…)
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therefore exist. (What does it mean by breaking RSA? plaintext 
recovery? key recovery?…) different things
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 Add randomness through padding



RSA PKCS #1 v1 5 paddingRSA PKCS #1 v1.5 padding
 E k 128 b t (1024 bit ) PKCS#1 1 5 RSA E.g. k=128 bytes (1024 bits) PKCS#1 v1.5 RSA
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RSA PKCS #1 v1 5 paddingRSA PKCS #1 v1.5 padding
 E k 128 b t (1024 bit ) PKCS#1 1 5 RSA E.g. k=128 bytes (1024 bits) PKCS#1 v1.5 RSA

 plaintext message M (at most 128-3-8=117 bytes)p g ( y )
 pseudorandom nonzero string PS (at least 8 bytes)
message to be encrypted m = 00||02||PS||00||Mmessage to be encrypted   m  00||02||PS||00||M
 encryption: c  me (mod n)

d ti d ( d ) decryption: m  cd (mod n)

 c is now random corresponding to a fixed m however c is now random corresponding to a fixed m, however, 
this only adds difficulties to the compilation of 
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ciphertexts (a factor of 264 times if PS is 8 bytes)



PKCS #1 v2 padding OAEPPKCS #1 v2 padding - OAEP
M: message (emLen-1-2hLen bytes)Seed P M
P: encoding parameters,

an octet string
MGF: mask generation functionHash

Padding Operation
Hash: selected hash function

(hLen is the output bytes)
DB=Hash(P)||PS||01||M
PS i l h LPS is length emLen-

||M||-2hLen-1 null bytes
Seed: hLen random bytes
dbM k MGF( d L hL )MGF

DB

 dbMask: MGF(seed, emLen-hLen)
maskedDB = DB  dbMask
seedMask: 

MFG(maskedDB hLen)
maskedDB

MGF

MGF




MFG(maskedDB, hLen)

maskedSeed = seed  seedMask 

EM: encoded message (emLen bytes)

maskedSeed
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EM: encoded message (emLen bytes)
EM = maskedSeed||makedDBEM



PKCS #1 v2 padding OAEPPKCS #1 v2 padding - OAEP

 Optimal Asymmetric Encryption (OAE)
 M. Bellare, “Optimal Asymmetric Encryption - How to 

i hEncrypt with RSA,” Eurocrypt’94

 Optimal Padding in the sense that 
RSA-OAEP is semantically secure against adaptive  

chosen ciphertext attackers in the random oracle 
model

 the message size in a k-bit RSA block is as large as 
possible (make the most advantage of the bandwidth)

 Following by more efficient padding schemes:
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g y p g
OAEP+, SAEP+, REACT



Digital EnvelopDigital Envelop
 Hybrid system (public key and secret key)y y (p y y)
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Digital EnvelopDigital Envelop
 Hybrid system (public key and secret key)y y (p y y)
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document document documentdocument
plaintext

AESK

document
ciphertext

AESK
-1

document
plaintext
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Digital EnvelopDigital Envelop
 Hybrid system (public key and secret key)y y (p y y)

RSA is about 1000 times slower than AES
 smaller exponent is faster (but more dangerous) smaller exponent is faster (but more dangerous)

document document documentdocument
plaintext

AESK

document
ciphertext

AESK
-1

document
plaintext

random 
128-bit
secret 

RSA Enc()
RSA 

encrypted 

RSA Dec() KOAEP OAEP-1
kZn k
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key: K
e c yp ed
secret key receiver RSA 

private key (n, d)
receiver RSA 
public key (n, e)



KEM/DEMKEM/DEM
 Key/Data Encapsulation Mechnism, hybrid schemey p , y
 k  K, in a digital envelope scheme, K is a session key, 

might get compromized forward security requires OAEP

OAEP

might get compromized, forward security, requires OAEP

secret key: K secret key: K

KDF KDF

RSA Enc()
RSA 

t d

RSA Dec()kRZn
k
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encrypted 
secret key material receiver RSA 

private key (n, d)
receiver RSA 
public key (n, e)KEM



KEM/DEMKEM/DEM
 Key/Data Encapsulation Mechnism, hybrid schemey p , y
 k  K, in a digital envelope scheme, K is a session key, 

might get compromized forward security requires OAEP

OAEP

might get compromized, forward security, requires OAEP
document
plaintext

AES
document
ciphertext

AES -1

document
plaintext

AESK AESK

secret key: K secret key: K

KDF KDF

RSA Enc()
RSA 

t d

RSA Dec()kRZn
k
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encrypted 
secret key material receiver RSA 

private key (n, d)
receiver RSA 
public key (n, e)KEM



RSA Fast Decryption with CRTRSA Fast Decryption with CRT
 Public key (n, e)y ( , )
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 Public key (n, e) n=pꞏq, p and q are large prime integers
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y ( , )
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m  m2 + h ꞏ q (mod n)
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m  m2 + h ꞏ q (mod n)CRT m  m2 (mod q)  and
m  m2 + qInv ꞏ (m1-m2) ꞏ q  m1 (mod p)
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 advantages: lower computational cost for the decryption 
(and signature) primitives if CRT is used (also see 6.8.14)
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 Goldwasser-Micali Cryptosystem (QR based)
 very low efficiency


