- Consider using CBC mode of encryption in the following way: the IV is treated as a key, and is assumed to be known to both Alice and Bob, but no actual encryption function is used. (That is, E_K(x) = x for all K and all x.) We will investigate whether this yields any security.
 - a. Show a known plaintext total break attack (i.e. one that yields IV) against this kind of cryptosystem.
 - b. Discuss ciphertext-only attacks, both in the case that only one block is given and in the case that ℓ blocks are given for some $\ell > 1$
- 2. For a string of bits S, let \overline{S} denote the complementary string obtained by changing all the 1's to 0's and all the 0's to 1's (equivalently, $S = \overline{S} \oplus 111111...111$). Show that if the DES key K encrypts P to C, then \overline{K} encrypts \overline{P} to \overline{C} .
- 3. Before AES was developed, it was suggested to increase the security of DES with the product cipher DES × DES. This product cipher uses two 56-bit keys. Consider known-plaintext attacks on product ciphers. In general, suppose that we take the product of any cipher S = (𝔅, 𝔅, 𝔅, 𝔅, 𝔅) with itself. Further, suppose that 𝐾 = {0,1}ⁿ and 𝔅 = {0,1}^m. Now assume we have several plaintext-ciphertext pairs for the product cipher S², say (x₁, y₁), ..., (x_ℓ, y_ℓ), all of which are obtained using the same unknown key, (K₁, K₂).
 - a. Prove that $E_{K_i}(x_i) = D_{K_2}(y_i)$ for all i, $1 \le i \le \ell$. Give a heuristic argument that the expected number of keys (K_1, K_2) such that $E_{k_i}(x_i) = D_{K_2}(y_i)$ for all i, $1 \le i \le \ell$, is roughly $2^{2n-\ell m}$.
 - b. Assume that l≥2n/m. A time-memory trade-off can be used to compute the unknown key (K₁, K₂). We compute two lists, each containing 2ⁿ items, where each item contains an l-tuple of elements of P as well as an element of K. If the two lists are sorted, then a common l-tuple can be identified by means of a linear search through each of the two lists. Show that this algorithm requires 2^{n+m+1}l + 2²ⁿ⁺¹ bits of memory and l 2ⁿ⁺¹ encryptions and/or decryptions.
 - c. Show that the memory requirement of the attack can be reduced by a factor of 2^t if the total number of encryptions is increased by a factor of 2^t . (Hint: Break the problem up into 2^{2t} subcases, each of which is specified by simultaneously fixing t bits of K_1 and t bits of K_2)

Hint: in 3.b, the lists are constructed as shown in the following figure

