Number Theory for Cryptography

密碼學與應用
 海洋大學資訊工程系
 丁培毅

Congruence

\triangleleft Modulo Operation:

* Question: What is $12 \bmod 9$?
* Answer: $12 \bmod 9 \equiv 3$ or $12 \equiv 3(\bmod 9)$
" 12 is congruent to 3 modulo 9 "
\triangleleft Definition: Let $a, r, m \in \mathrm{Z}$ (where Z is the set of all integers) and $m>0$. We write
* $\quad a \equiv r(\bmod m)$ if m divides $a-r$ (i.e. $\mathrm{m} \mid a-r)$
* m is called the modulus
* r is called the remainder
* $a=q \cdot m+r \quad 0 \leq r<m$
\diamond Example: $a=42$ and $m=9$
* $42=4 \cdot 9+6$ therefore $42 \equiv 6(\bmod 9)$

Greatest Common Divisor

$\triangleleft \mathrm{GCD}$ of a and b is the largest positive integer dividing both a and b
$\diamond \operatorname{gcd}(\mathrm{a}, \mathrm{b})$ or (a, b)
$\diamond e x . \operatorname{gcd}(6,4)=2, \operatorname{gcd}(5,7)=1$
\diamond Euclidean algorithm remainder \rightarrow divisor \rightarrow dividend \rightarrow ignore

* ex. $\operatorname{gcd}(482,1180)$ $1180=2: 482+$
$482=2 \cdot 216+50$
Why does it work?
Let $d=\operatorname{gcd}(482,1180)$
d | 482 and d $|1180 \Rightarrow d| 216$
because $216=1180-2 \cdot 482$
d| 216 and d| $482 \Rightarrow d \mid 50$
d | 50 and d $\mid 216 \Rightarrow$ d | 16
d | 16 and d | $50 \Rightarrow$ d | 2
$2 \mid 16 \Rightarrow d=2$

Greatest Common Divisor（cont＇d）

« Euclidean Algorithm：calculating GCD $\operatorname{gcd}(1180,482)$
（䡙轉相除法）

2	482	1180	2
	432	964	
3	50	216	4
	48	200	
	2	16	8
		16	
		0	

Greatest Common Divisor (cont'd)

\diamond Def: a and b are relatively prime: $\operatorname{gcd}(\mathrm{a}, \mathrm{b})=1$
\triangleleft Theorem: Let a and b be two integers, with at least one of a, b nonzero, and let $\mathrm{d}=\operatorname{gcd}(\mathrm{a}, \mathrm{b})$. Then there exist integers $x, y, \operatorname{gcd}(x, y)=1$ such that $a \cdot x+b \cdot y=d$

* Constructive proof: Using Extended Euclidean Algorithm to find x and y

$$
d=2=50-3 \cdot 16
$$

$$
=(482-2 \cdot 216)-3 \cdot(216-4 \cdot 50) \cdots 50=482-2 .
$$

$$
=\cdots \cdot=1180 \cdot(-29)+482 \cdot 71 \quad \because 16=216-4 \cdot 50
$$

$$
\frac{1}{t} x^{\prime}
$$

Extended Euclidean Algorithm

Let $\operatorname{gcd}(\mathrm{a}, \mathrm{b})=\mathrm{d}$
\diamond Looking for s and $t, \operatorname{gcd}(s, t)=1$ s.t. $a \cdot s+b \cdot t=d$
\diamond When $\mathrm{d}=1, \mathrm{t} \equiv \mathrm{b}^{-1}(\bmod \mathrm{a})$
Ex. $\quad 1180=2 \cdot 482+$

$$
\begin{align*}
& \mathrm{a}=\mathrm{q}_{1} \cdot \mathrm{~b}+\mathrm{r} \\
& \mathrm{~b}=\mathrm{q}_{2} \cdot \mathrm{r}_{1}+\mathrm{r}_{2} \tag{1}
\end{align*}
$$

$$
\begin{aligned}
& 1180-2 \cdot 482= \\
& 482=2 \cdot 216+50 \\
& 482-2 \cdot(1180-2 \cdot 482)=50 \\
& -2 \cdot 1180+5 \cdot 482=50 \\
& 216=4 \cdot 50+16 \\
& 4 \cdot(-2 \cdot 1180+5 \cdot 482)=16 \\
& 9 \cdot 1180-22 \cdot 482=16 \\
& 50=3 \cdot 16+2 \\
& (-2 \cdot 1180+5 \cdot 482)- \\
& 3 \cdot(9 \cdot 1180-22 \cdot 482)=2 \\
& \mathrm{r}_{3}=\mathrm{q}_{5} \cdot \mathrm{~d}+0 \\
& -29 \cdot 1180+71 \cdot 482=26
\end{aligned}
$$

Greatest Common Divisor (cont'd)

* The above proves only the existence of integers x and y
* How about gcd(x, y)?

$$
\begin{aligned}
& \begin{array}{l}
\mathrm{d}=\mathrm{a} \cdot \mathrm{x}+\mathrm{b} \cdot \mathrm{y} \\
\mathrm{~d}=\mathrm{gcd}(\mathrm{a}, \mathrm{~b})
\end{array} \\
& \text { If } \mathrm{gcd}(\mathrm{x}, \mathrm{y})=\mathrm{r} \text { then } \quad 1=\mathrm{a} / \mathrm{d} \cdot\left(\mathrm{x}^{\prime} \cdot \mathrm{r}\right)+\mathrm{b} / \mathrm{d} \cdot\left(\mathrm{y}^{\prime} \cdot \mathrm{r}\right) \\
& \text { i.e. } 1=\mathrm{r} \cdot\left(\mathrm{a} / \mathrm{d} \cdot \mathrm{x}^{\prime}+\mathrm{b} / \mathrm{d} \cdot \mathrm{y}^{\prime}\right)^{4}-\cdots
\end{aligned}
$$

which means that $r \mid 1$ i.e. $r=1$

$$
\operatorname{gcd}(x, y)=1
$$

Note: $\operatorname{gcd}(\mathrm{x}, \mathrm{y})=1$ but (x, y) is not unique

$$
\text { e.g. } d=a x+b y=a(x-k b)+b(y+k a)
$$

Greatest Common Divisor (cont'd)

Lemma: $\operatorname{gcd}(\mathrm{a}, \mathrm{b})=\operatorname{gcd}(\mathrm{x}, \mathrm{y})=\operatorname{gcd}(\mathrm{a}, \mathrm{y})=\operatorname{gcd}(\mathrm{x}, \mathrm{b})=1 \Leftrightarrow$

$$
\exists \mathrm{a}, \mathrm{~b}, \mathrm{x}, \mathrm{y} \text { s.t. } 1=\mathrm{ax}+\mathrm{by}
$$

pf: \Rightarrow)
following the previous theorem
(\Leftarrow)
Given a, b, z, if $\exists \mathrm{x}, \mathrm{y}, \operatorname{gcd}(\mathrm{x}, \mathrm{y})=1$ s.t. $\mathrm{z}=\mathrm{ax}+\mathrm{by}$ then $\operatorname{gcd}(\mathrm{a}, \mathrm{b}) \mid \mathrm{z}(\operatorname{also} \operatorname{gcd}(\mathrm{a}, \mathrm{y})|\mathrm{z}, \operatorname{gcd}(\mathrm{x}, \mathrm{b})| \mathrm{z})$

$$
(\operatorname{let} \mathrm{d}=\operatorname{gcd}(\mathrm{a}, \mathrm{~b}) \Rightarrow \mathrm{d} \mid \mathrm{a} \text { and } \mathrm{d}|\mathrm{~b} \Rightarrow \mathrm{~d}| \mathrm{ax}+\mathrm{b} \mathrm{y} \Rightarrow \mathrm{~d} \mid \mathrm{z})
$$

especially, given a, $b, \exists \mathrm{x}, \mathrm{y}$ s.t. $1=\mathrm{ax}+\mathrm{b} y$

$$
\Rightarrow \operatorname{gcd}(\mathrm{a}, \mathrm{~b}) \mid 1 \Rightarrow \operatorname{gcd}(\mathrm{a}, \mathrm{~b})=1
$$

Operations under mod n

\star Proposition:
Let $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{n}$ be integers with $\mathrm{n} \neq 0$, suppose $\mathrm{a} \equiv \mathrm{b}(\bmod \mathrm{n})$ and $\mathrm{c} \equiv \mathrm{d}(\bmod \mathrm{n})$ then
$a+c \equiv b+d(\bmod n)$,
$\mathrm{a}-\mathrm{c} \equiv \mathrm{b}-\mathrm{d}(\bmod \mathrm{n})$,
$\mathrm{a} \cdot \mathrm{c} \equiv \mathrm{b} \cdot \mathrm{d}(\bmod \mathrm{n})$
\diamond Proposition:
Let $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{n}$ be integers with $\mathrm{n} \neq 0$ and $\operatorname{gcd}(\mathrm{a}, \mathrm{n})=1$.
If $\mathrm{a} \cdot \mathrm{b} \equiv \mathrm{a} \cdot \mathrm{c}(\bmod \mathrm{n})$ then $\mathrm{b} \equiv \mathrm{c}(\bmod \mathrm{n})$

Operations under mod n

\triangleleft What is the multiplicative inverse of a $(\bmod n)$?

$$
\text { i.e. } \begin{aligned}
a \cdot a^{-1} & \equiv 1(\bmod n) \quad \text { or } a \cdot a^{-1}=1+k \cdot n \\
\operatorname{gcd}(a, n)=1 & \Rightarrow \exists s \text { and } t \text { such that } a \cdot s+n \cdot t=1 \\
& \Rightarrow a^{-1} \equiv s(\bmod n)
\end{aligned}
$$

This expression also implies $\operatorname{gcd}(\mathrm{a}, \mathrm{n})=1$.

$$
\mathrm{x} \equiv \mathrm{~b} \cdot \mathrm{a}^{-1} \equiv \mathrm{~b} \cdot \mathrm{~s}(\bmod \mathrm{n})
$$

$\diamond \mathrm{a} \cdot \mathrm{x} \equiv \mathrm{b}(\bmod \mathrm{n}), \operatorname{gcd}(\mathrm{a}, \mathrm{n})=\mathrm{d}>1, \mathrm{x} \equiv$? Are there any solutions? if $\mathrm{d} \mid \mathrm{b}(\mathrm{a} / \mathrm{d}) \cdot \mathrm{x} \equiv(\mathrm{b} / \mathrm{d})(\bmod \mathrm{n} / \mathrm{d}) \quad \operatorname{gcd}(\mathrm{a} / \mathrm{d}, \mathrm{n} / \mathrm{d})=1$

$$
\mathrm{x}_{0} \equiv(\mathrm{~b} / \mathrm{d}) \cdot(\mathrm{a} / \mathrm{d})^{-1}(\bmod \mathrm{n} / \mathrm{d})
$$

\Rightarrow there are d solutions to the equation $\mathrm{a} \cdot \mathrm{x} \equiv \mathrm{b}(\bmod \mathrm{n})$:

$$
\mathrm{x}_{0}, \mathrm{x}_{0}+(\mathrm{n} / \mathrm{d}), \ldots, \mathrm{x}_{0}+(\mathrm{d}-1) \cdot(\mathrm{n} / \mathrm{d})(\bmod \mathrm{n})
$$

Matrix inversion under mod n

\triangleleft A square matrix is invertible mod n if and only if its determinant and n are relatively prime $\diamond e x$: in real field R

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)^{-1}=\frac{1}{a d-b c}\left(\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right)
$$

In a finite field $\mathrm{Z}(\bmod \mathrm{n})$? we need to find the inverse for ad-bc $(\bmod n)$ in order to calculate the inverse of the matrix

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)^{-1}=(a d-b c)^{-1}\left(\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right)(\bmod n)
$$

Group

\triangleleft A group G is a finite or infinite set of elements and a binary operation \times which together satisfy

1．Closure：$\quad \forall \mathrm{a}, \mathrm{b} \in \mathrm{G} \quad \mathrm{a} \times \mathrm{b}=\mathrm{c} \in \mathrm{G}$
2．Associativity：$\forall \mathrm{a}, \mathrm{b}, \mathrm{c} \in \mathrm{G}(\mathrm{a} \times \mathrm{b}) \times \mathrm{c}=\mathrm{a} \times(\mathrm{b} \times \mathrm{c})$
3．Identity：$\quad \forall \mathrm{a} \in \mathrm{G} \quad 1 \times \mathrm{a}=\mathrm{a} \times 1=\mathrm{a}$
4．Inverse：$\quad \forall a \in G$ $a \times a^{-1}=1=a^{-1} \times a$

封閉性
結合性
單位元素
反元素
\triangleleft Abelian group 交換群 $\quad \forall \mathrm{a}, \mathrm{b} \in \mathrm{G} \quad \mathrm{a} \times \mathrm{b}=\mathrm{b} \times \mathrm{a}$

$$
- \text { means } \mathrm{g} \times \mathrm{g} \times \mathrm{g} \times \ldots \times \mathrm{g}
$$

\diamond Cyclic group G of order m：a groúp defined by an element $\mathrm{g} \in \mathrm{G}$ such that $\mathrm{g}, \mathrm{g}^{2}, \mathrm{~g}^{3}, \ldots . \mathrm{g}^{\mathrm{m}}$ are all distinct elements in G（thus cover all elements of G ）and $\mathrm{g}^{\mathrm{m}}=1$ ， the element g is called a generator of G ． $\mathrm{Ex}: \mathrm{Z}_{\mathrm{n}}($ or $\mathrm{Z} / \mathrm{nZ})$

Group (cont'd)

\diamond The order of a group: the number of elements in a group G, denoted |G|. If the order of a group is a finite number, the group is said to be a finite group, note $\mathrm{g}^{\mathrm{G} \mid}=1$ (the identity element).
$\stackrel{\text { The order of an element } \mathbf{g} \text { of a finite group } G \text { is the }}{ }$
power m such that $\mathrm{g}^{\mathrm{m}}=1$ (the identity element), denoted by $\operatorname{ord}_{\mathrm{G}}(\mathrm{g})$
\triangleleft ex: \mathbf{Z}_{n} : additive group modulo n is the set $\{0,1, \ldots, \mathrm{n}-1\}$ binary operation: + $(\bmod n)$ identity: 0
inverse: $-\mathrm{x} \equiv \mathrm{n}-\mathrm{x}(\bmod \mathrm{n})$
size of Z_{n} is n,
$\underbrace{\mathrm{g}+\mathrm{g}+\ldots+\mathrm{g}} \equiv 0(\bmod \mathrm{n})$
\diamond ex: $\mathbb{Z}_{\mathrm{n}}^{*}$: multiplicative group modulo n is the set $\{\mathrm{i}: 0<\mathrm{i}<\mathrm{n}, \operatorname{gcd}(\mathrm{i}, \mathrm{n})=1\}$ binary operation: $\times(\bmod n)$ identity: 1
size of Z_{n}^{*} is $\phi(n)$,
$\mathrm{g}^{\phi(\mathrm{n})} \equiv 1(\bmod \mathrm{n})$
inverse: x^{-1} can be found using extended Euclidean Algorithm

Ring Z_{m}

\diamond Definition: The ring Z_{m} consists of

* The set $\mathrm{Z}_{\mathrm{m}}=\{0,1,2, \ldots, m-1\}$
* Two operations "+ (mod m)" and " $\times(\bmod m)$ " for all $a, b \in \mathrm{Z}_{\mathrm{m}}$ such that they satisfy the properties on the next slide
\checkmark Example: $m=9 Z_{9}=\{0,1,2,3,4,5,6,7,8\}$

$$
\begin{aligned}
& 6+8=14 \equiv 5(\bmod 9) \\
& 6 \times 8=48 \equiv 3(\bmod 9)
\end{aligned}
$$

Properties of the ring Z_{m}

\triangleleft Consider the ring $\mathrm{Z}_{\mathrm{m}}=\{0,1, \ldots, m-1\}$
\& The additive identity " 0 ": $a+0 \equiv a(\bmod m)$
女 The additive inverse of a : $-a=m-a$ s.t. $a+(-a) \equiv 0(\bmod m)$
\& Addition is closed i.e if $a, b \in \mathrm{Z}_{\mathrm{m}}$ then $a+b \in \mathrm{Z}_{\mathrm{m}}$
\& Addition is commutative $a+b \equiv b+a(\bmod m)$

* Addition is associative $(a+b)+c \equiv a+(b+c)(\bmod m)$
\& Multiplicative identity " 1 ": $a \times 1 \equiv a(\bmod m)$
女 The multiplicative inverse of a exists only when $\operatorname{gcd}(a, m)=1$ and denoted as a^{-1} s.t. $a^{-1} \times a \equiv 1(\bmod m)$ might or might not exist
* Multiplication is closed i.e. if $a, b \in \mathrm{Z}_{\mathrm{m}}$ then $a \times b \in \mathrm{Z}_{\mathrm{m}}$

4 Multiplication is commutative $a \times b \equiv b \times a(\bmod m)$
Multiplication is associative $(a \times b) \times c \equiv a \times(b \times c)(\bmod m)$

Some remarks on the ring Z_{m}

\triangleleft A ring is an Abelian group under addition and a semigroup under multiplication.
\diamond A semigroup is defined for a set and a binary operator in which the multiplication operation is associative. No other restrictions are placed on a semigroup; thus a semigroup need not have an identity element and its elements need not have inverses within the semigroup.

Some remarks on the ring Z_{m} (cont'd)

\diamond Roughly speaking a ring is a mathematical structure in which we can add, subtract, multiply, and even sometimes divide. (A ring in which every element has multiplicative inverse is called a field.)
\# Example: Is the division $4 / 15(\bmod 26)$ possible?
In fact, $4 / 15 \bmod 26 \equiv 4 \times 15^{-1}(\bmod 26)$
Does $15^{-1}(\bmod 26)$ exist ?
It exists only if $\operatorname{gcd}(15,26)=1$.

$$
\begin{aligned}
& 15^{-1} \equiv 7(\bmod 26) \quad \text { therefore, } \\
& 4 / 15 \bmod 26 \equiv 4 \times 7 \equiv 28 \equiv 2 \bmod 26
\end{aligned}
$$

Some remarks on the group Z_{m} and $\mathrm{Z}_{\mathrm{m}}{ }^{*}$

\star The modulo operation can be applied whenever we want under Z_{m} $(a+b)(\bmod m) \equiv[(a(\bmod m))+((b \bmod m))](\bmod m)$ under $\mathrm{Z}_{\mathrm{m}}{ }^{*}$
$(a \times b)(\bmod m) \equiv[(a(\bmod m)) \times((b \bmod m))](\bmod m)$ $a^{b}(\bmod m) \equiv(a(\bmod m))^{b}(\bmod m)$

Go Question? $a^{b}(\bmod m) ? a^{(b \bmod m)}(\bmod m)$

Exponentiation in Z_{m}

\triangleleft Example: $3^{8}(\bmod 7) \equiv$?

$$
\begin{aligned}
3^{8}(\bmod 7) & \equiv 6561(\bmod 7) \equiv 2 \text { since } 6561 \equiv 937 \times 7+2 \quad \text { or } \\
3^{8}(\bmod 7) & \equiv 3^{4} \times 3^{4}(\bmod 7) \equiv 3^{2} \times 3^{2} \times 3^{2} \times 3^{2}(\bmod 7) \\
& \equiv\left(3^{2}(\bmod 7)\right) \times\left(3^{2}(\bmod 7)\right) \times\left(3^{2}(\bmod 7)\right) \times\left(3^{2}(\bmod 7)\right) \\
& \equiv 2 \times 2 \times 2 \times 2(\bmod 7) \equiv 16(\bmod 7) \equiv 2
\end{aligned}
$$

\diamond The cyclic group $\mathrm{Z}_{\mathrm{m}}{ }^{*}$ and the modulo arithmetic is of central importance to modern public-key cryptography. In practice, the order of the integers involved in PKC are in the range of $\left[2^{160}, 2^{1024}\right]$. Perhaps even larger.

Exponentiation in Z_{m} (cont'd)

\diamond How do we do the exponentiation efficiently? $\triangleleft 3^{1234}(\bmod 789)$ many ways to do this
a. do 1234 times multiplication and then calculate remainder
b. repeat 1234 times (multiplication by 3 and calculate remainder)
c. repeated $\lfloor\log 1234\rfloor$ times (square, multiply and calculate remainder) ex. first tabulate

$$
\begin{array}{cll}
3^{2} \equiv 9(\bmod 789) & 3^{32} \equiv 459^{2} \equiv 18 & 3^{512} \equiv 732^{2} \equiv 93 \\
3^{4} \equiv 9^{2} \equiv 81 & 3^{64} \equiv 18^{2} \equiv 324 & 3^{1024} \equiv 93^{2} \equiv 759 \\
3^{8} \equiv 81^{2} \equiv 249 & 3^{128} \equiv 324^{2} \equiv 39 & \\
3^{16} \equiv 249^{2} \equiv 459 & 3^{256} \equiv 39^{2} \equiv 732 \\
1234=1024+128+64+16+2 & (10011010010)_{2} \\
3^{1234} \equiv 3^{(1024+128+64+16+2)} \equiv(((759 \cdot 39) \cdot 324) \cdot 459) \cdot 9 \equiv 105(\bmod 789)
\end{array}
$$

Exponentiation in Z_{m} (cont ${ }^{\mathrm{d}}$)

calculate $\mathrm{X}^{\mathrm{Y}} \quad(\bmod \mathrm{m}) \quad$ where $\mathrm{y}=\mathrm{b}_{0} \cdot 2^{2}+\mathrm{b}_{1} \cdot 2+\mathrm{b}_{2}$
\diamond Method 1:
\diamond Method 2:

square and multiply $\lfloor\log \mathrm{y}\rfloor$ times

Exponentiation in Z_{m} (cont'd)

Method 1:

$$
\begin{aligned}
1234 & =1024+128+64+16+2 \quad(10011010010)_{2} \\
3^{1234} & \equiv 3^{0+2(1+2(0+2(0+2(1+2(0+2(1+2(1+2(0+2(0+2(1))))))))))} \\
& \equiv 9 \cdot 9^{2(0+2(0+2(1+2(0+2(1+2(1+2(0+2(0+2(1))))))))} \\
& \equiv 9 \cdot 81^{2(0+2(1+2(0+2(1+2(1+2(0+2(0+2(1))))))))} \\
& \equiv 9 \cdot 249^{2(1+2(0+2(1+2(1+2(0+2(0+2(1)))))))} \\
& \equiv 9 \cdot 459 \cdot 459^{2(0+2(1+2(1+2(0+2(0+2(1))))))} \\
& \equiv 9 \cdot 459 \cdot 18^{2(1+2(1+2(0+2(0+2(1)))))} \\
& \equiv 9 \cdot 459 \cdot 324 \cdot 324^{2(1+2(0+2(0+2(1))))} \\
& \equiv 9 \cdot 459 \cdot 324 \cdot 39 \cdot 39^{2(0+2(0+2(1))))} \\
& \equiv 9 \cdot 459 \cdot 324 \cdot 39 \cdot 732^{2(0+2(1))} \\
& \equiv 9 \cdot 459 \cdot 324 \cdot 39 \cdot 93^{2}(1) \\
& \equiv 9 \cdot 459 \cdot 324 \cdot 39 \cdot 759 \bmod 789
\end{aligned}
$$

Exponentiation in Z_{m} (cont ${ }^{\mathrm{d}}$)

Method 2: $1234=1024+128+64+16+2 \quad(10011010010)_{2}$

$$
\begin{aligned}
3^{1234} & \equiv 3^{0+2(1+2(0+2(0+2(1+2(0+2(1+2(1+2(0+2(0+2(1))))))))))} \\
& \equiv\left(3 \cdot 3^{2(0+2(1+2(0+2(1+2(1+2(0+2(0+2(1))))))))}\right)^{2} \\
& \equiv\left(3 \cdot\left(3^{2(1+2(0+2(1+2(1+2(0+2(0+2(1)))))))}\right)^{2}\right)^{2} \\
& \equiv\left(3 \cdot\left(\left(3 \cdot 3^{2(0+2(1+2(1+2(0+2(0+2(1))))))}\right)^{2}\right)^{2}\right)^{2} \\
& \equiv\left(3 \cdot\left(\left(3 \cdot\left(3^{2(1+2(1+2(0+2(0+2(1)))))}\right)^{2}\right)^{2}\right)^{2}\right)^{2} \\
& \equiv\left(3 \cdot \left(\left(3 \cdot \left(\left(3 \cdot 3^{\left.\left.\left.\left.2(1+2(0+2(0+2(1)))))^{2}\right)^{2}\right)^{2}\right)^{2}\right)^{2}}\right.\right.\right.\right.\right. \\
& \equiv\left(3 \cdot \left(\left(3 \cdot \left(\left(3 \cdot \left(3 \cdot 3^{\left.\left.\left.\left.\left.2(0+2(0+2(1))))^{2}\right)^{2}\right)^{2}\right)^{2}\right)^{2}\right)^{2}}\right.\right.\right.\right.\right.\right. \\
& \equiv\left(3 \cdot\left(\left(3 \cdot\left(\left(3 \cdot\left(3 \cdot\left(3^{2(0+2(1))}\right)^{2}\right)^{2}\right)^{2}\right)^{2}\right)^{2}\right)^{2}\right)^{2} \\
& \equiv\left(3 \cdot\left(\left(3 \cdot\left(\left(3 \cdot\left(3 \cdot\left(\left(3^{2(1)}\right)^{2}\right)^{2}\right)^{2}\right)^{2}\right)^{2}\right)^{2}\right)^{2}\right)^{2} \\
& \equiv\left(3 \cdot\left(\left(3 \cdot\left(\left(3 \cdot\left(3 \cdot\left(\left(\left(3^{1}\right)^{2}\right)^{2}\right)^{2}\right)^{2}\right)^{2}\right)^{2}\right)^{2}\right)^{2}\right)^{2}
\end{aligned}
$$

Chinese Remainder Theorem（CRT）

$\stackrel{\forall}{ } \neq \mathrm{j} \in\{1,2, \ldots \mathrm{k}\}, \operatorname{gcd}\left(\mathrm{r}_{\mathrm{i}}, \mathrm{r}_{\mathrm{j}}\right)=1,0 \leq \mathrm{m}_{\mathrm{i}}<\mathrm{r}_{\mathrm{i}}$
Is there an m that satisfies simultaneously the following set of congruence equations？

$$
\begin{aligned}
\mathrm{m} & \equiv \mathrm{~m}_{1}\left(\bmod \mathrm{r}_{1}\right) \\
& \equiv \mathrm{m}_{2}\left(\bmod \mathrm{r}_{2}\right)
\end{aligned}
$$

$\equiv \mathrm{m}_{\mathrm{k}}\left(\bmod \mathrm{r}_{\mathrm{k}}\right)$
Note： $\operatorname{gcd}(3,5)=1$

$$
\operatorname{gcd}(3,7)=1
$$

$$
\operatorname{gcd}(5,7)=1
$$

\diamond 韓信點兵：三個一數餘一，五個一數餘二，七個一數餘三，請問隊伍中至少有幾名士兵？

$$
\begin{aligned}
& \text { ex: } m \equiv 1(\bmod 3) \\
& \equiv 2(\bmod 5) \\
& \equiv 3(\bmod 7)
\end{aligned}
$$

Chinese Remainder Theorem (CRT)

\diamond first solution:

$$
\begin{aligned}
& \mathrm{n}=\mathrm{r}_{1} \mathrm{r}_{2} \cdots \mathrm{r}_{\mathrm{k}} \\
& \mathrm{z}_{\mathrm{i}}=\mathrm{n} / \mathrm{r}_{\mathrm{i}} \\
& \exists!\mathrm{s}_{\mathrm{i}} \in \mathrm{Z}_{\mathrm{r}_{\mathrm{i}}}^{*} \text { s.t. } \mathrm{s}_{\mathrm{i}} \cdot \mathrm{z}_{\mathrm{i}}=1\left(\bmod \mathrm{r}_{\mathrm{i}}\right)\left(\text { since } \operatorname{gcd}\left(\mathrm{z}_{\mathrm{i}}, \mathrm{r}_{\mathrm{i}}\right)=1\right) \\
& \mathrm{m} \equiv \sum_{\mathrm{i}=1}^{\mathrm{k}} \mathrm{z}_{\mathrm{i}} \cdot \mathrm{~s}_{\mathrm{i}} \cdot \mathrm{~m}_{\mathrm{i}}(\bmod \mathrm{n}) \quad \text { Unique solution in } \mathrm{Z}_{\mathrm{n}} \text { ? }
\end{aligned}
$$

$\triangleleft \mathrm{ex}: \mathrm{n}=3 \cdot 5 \cdot 7$

$$
\begin{aligned}
& \mathrm{m}_{1}=1, \mathrm{~m}_{2}=2, \mathrm{~m}_{3}=3 \\
& \mathrm{r}_{1}=3, \mathrm{r}_{2}=5, \mathrm{r}_{3}=7 \\
& \mathrm{z}_{1}=35, \mathrm{z}_{2}=21, \mathrm{z}_{3}=15 \\
& \mathrm{~s}_{1}=2, \mathrm{~s}_{2}=1, \mathrm{~s}_{3}=1 \\
& \mathrm{~m} \equiv 35 \cdot 2 \cdot 1+21 \cdot 1 \cdot 2+15 \cdot 1 \cdot 3 \equiv 157 \equiv 52(\bmod 105)
\end{aligned}
$$

Chinese Remainder Theorem (CRT)

« Uniqueness:

1. If there exists $m^{\prime} \in \mathrm{Z}_{\mathrm{n}}(\neq \mathrm{m})$ also satisfies the previous k congruence relations, then

$$
\forall \mathrm{i}, \mathrm{~m}^{\prime}-\mathrm{m}=0\left(\bmod \mathrm{r}_{\mathrm{i}}\right) .
$$

2. This is equivalent to $\forall \mathrm{i}, \mathrm{m}^{\prime}=\mathrm{m}+\mathrm{k}_{\mathrm{i}} \cdot \mathrm{r}_{\mathrm{i}}$

$\square \mathrm{m}^{\prime}=\mathrm{m}+\mathrm{k} \cdot \operatorname{lcm}\left(\mathrm{r}_{1}, \mathrm{r}_{2} \ldots \mathrm{r}_{\mathrm{k}}\right)=\mathrm{m}+\mathrm{k} \cdot \mathrm{n}$
$\longmapsto m^{\prime} \notin \mathrm{Z}_{\mathrm{n}}$ for all $\mathrm{k} \neq 0$
contradiction!

Chinese Remainder Theorem (CRT)

\triangleleft second solution:

$$
\begin{aligned}
& \mathrm{R}_{\mathrm{i}}=\mathrm{r}_{1} \mathrm{r}_{2} \cdots \mathrm{r}_{\mathrm{i}-1} \\
& \exists!t_{i} \in \mathbb{Z}_{\mathrm{r}_{\mathrm{i}}}^{*} \text { s.t. } \mathrm{t}_{\mathrm{i}} \cdot \mathrm{R}_{\mathrm{i}} \equiv 1\left(\bmod \mathrm{r}_{\mathrm{i}}\right)\left(\text { since } \operatorname{gcd}\left(\mathrm{R}_{\mathrm{i}}, \mathrm{r}_{\mathrm{i}}\right)=1\right) \\
& \left\{\begin{array}{l}
\hat{m}_{1}=m_{1} \\
\hat{m}_{i}=\hat{m}_{i-1}+R_{i} \cdot\left(m_{i}-\hat{m}_{i-1}\right) \cdot t_{i}\left(\bmod R_{i+1}\right) \quad i \geq 2
\end{array}\right. \\
& \mathrm{m}=\hat{\mathrm{m}}_{\mathrm{k}} \\
& \text { Note that } \hat{\mathrm{m}}_{\mathrm{i}} \equiv \mathrm{~m}_{1}\left(\bmod \mathrm{r}_{1}\right) \\
& m_{1}=1, m_{2}=2, m_{3}=3 \\
& r_{1}=3, \quad r_{2}=5, \quad r_{3}=7 \\
& \mathrm{R}_{2}=3, \mathrm{R}_{3}=15, \mathrm{R}_{4}=105 \\
& \equiv \mathrm{~m}_{2}\left(\bmod \mathrm{r}_{2}\right) \\
& \text { ex: } \hat{m}_{1} \equiv 1^{t_{2}}=2, \quad t_{3}=1 \\
& \equiv \mathrm{~m}_{\mathrm{i}}\left(\bmod \mathrm{r}_{\mathrm{i}}\right) \\
& \hat{\mathrm{m}}_{2} \equiv 1+3 \cdot(2-1) \cdot 2=7 \\
& \widehat{\mathrm{~m}} \equiv \mathrm{~m}_{3} \equiv 7+15 \cdot(3-7) \cdot 1 \\
& \equiv-53 \equiv 52(\bmod 105)
\end{aligned}
$$

Chinese Remainder Theorem (CRT)

\diamond special case:

$$
X \equiv m\left(\bmod r_{1}\right) \equiv m\left(\bmod r_{2}\right) \cdots \equiv m_{n}\left(\bmod r_{n}\right) \Rightarrow X \equiv m\left(\bmod r_{1} r_{2} \cdots r_{n}\right)
$$

\diamond insight of the second solution: every step satisfies one more requirement
 m_{1} is the only solution for x in $Z_{R_{2}}^{*}$ general solution of x must be $\hat{m}_{1}+k R_{2}$ for some k
$\sim\left(\begin{array}{rllll}x & \equiv m_{1}\left(\bmod r_{1}\right) & L & \hat{m}_{2} & r_{2} r_{1} \\ \equiv m_{2}\left(\bmod r_{2}\right) & \hat{m}_{2}+r_{2} r_{1} & 2 r_{2} r_{1}\end{array} \quad R_{3}=r_{2} r_{1}\right.$
號 let $\hat{m}_{2} \equiv \hat{m}_{1}+\mathrm{k}^{*} \mathrm{R}_{2}\left(\bmod \mathrm{R}_{3}\right)$ where $\mathrm{k}^{*}=\mathrm{t}_{2}\left(\mathrm{~m}_{2}-\hat{\mathrm{m}}_{1}\right)$ and $\mathrm{t}_{2} \mathrm{R}_{2} \equiv 1\left(\bmod \mathrm{r}_{2}\right)$ m_{2} is the only solution for x in $Z_{R_{3}}^{*}$ general solution of x must be $\hat{m}_{2}+k R_{3}$ for some k

Chinese Remainder Theorem (CRT)

\diamond Applications: solve $x^{2} \equiv 1(\bmod 35)$

* $35=5 \cdot 7$
* x^{*} satisfies $\mathrm{f}\left(\mathrm{x}^{*}\right) \equiv 0(\bmod 35) \Leftrightarrow$
x^{*} satisfies both $f\left(x^{*}\right) \equiv 0(\bmod 5)$ and $f\left(x^{*}\right) \equiv 0(\bmod 7)$
Proof:
(\Leftarrow)

$$
\begin{aligned}
& f\left(x^{*}\right)=k_{1} \cdot p \text { and } f\left(x^{*}\right)=k_{2} \cdot q \text { imply that } \\
& f\left(x^{*}\right)=k \cdot \operatorname{lcm}(p \cdot q)=k \cdot p \cdot q \text { i.e. } f\left(x^{*}\right) \equiv 0(\bmod p \cdot q)
\end{aligned}
$$

(\Rightarrow)

$$
\begin{aligned}
& \mathrm{f}\left(\mathrm{x}^{*}\right)=\mathrm{k} \cdot \mathrm{p} \cdot \mathrm{q} \text { implies that } \\
& f\left(x^{*}\right)=(k \cdot p) \cdot q=(k \cdot q) \cdot p \quad \text { i.e. } f\left(x^{*}\right) \equiv 0(\bmod p) \\
& \equiv 0(\bmod q)
\end{aligned}
$$

Chinese Remainder Theorem (CRT)

* since 5 and 7 are prime, we can solve

$$
x^{2} \equiv 1(\bmod 5) \text { and } x^{2} \equiv 1(\bmod 7)
$$

far more easily than $x^{2} \equiv 1(\bmod 35)$

* $x^{2} \equiv 1(\bmod 5)$ has exactly two solutions: $x \equiv \pm 1(\bmod 5)$
* $x^{2} \equiv 1(\bmod 7)$ has exactly two solutions: $x \equiv \pm 1(\bmod 7)$
* put them together and use CRT, there are four solutions

$$
\begin{aligned}
& \Rightarrow x \equiv 1(\bmod 5) \equiv 1(\bmod 7) \Rightarrow x \equiv 1(\bmod 35) \\
& \Rightarrow x \equiv 1(\bmod 5) \equiv 6(\bmod 7) \Rightarrow x \equiv 6(\bmod 35) \\
& \Rightarrow x \equiv 4(\bmod 5) \equiv 1(\bmod 7) \Rightarrow x \equiv 29(\bmod 35) \\
& \Rightarrow x \equiv 4(\bmod 5) \equiv 6(\bmod 7) \Rightarrow x \equiv 34(\bmod 35)
\end{aligned}
$$

Matlab tools

matrix inverse matrix determinant
$\mathrm{p}=\mathrm{qd}+\mathrm{r}$
$\mathrm{g}=\mathrm{a} \mathrm{s}+\mathrm{b} \mathrm{t}$
factoring
prime numbers $<\mathrm{N}$
test prime
mod exponentiation *
find primitive root *
crt *
$\phi(\mathrm{N})$ * eulerphi(N)

Field

\triangleleft Field: a set that has the operation of addition, multiplication, subtraction, and division by nonzero elements. Also, the associative, commutative, and distributive laws hold.
\triangleleft Ex. Real numbers, complex numbers, rational numbers, integers mod a prime are fields
\triangleleft Ex. Integers, 2×2 matrices with real entries are not fields
$\diamond \operatorname{Ex} \cdot \operatorname{GF}(4)=\left\{0,1, \omega, \omega^{2}\right\}$
$\star 0+x=x$
$x+x=0$$\quad$ - Addition and multiplication are commutative and

* $\mathrm{x}+\mathrm{x}=0$ associative, and the distributive law $\mathrm{x}(\mathrm{y}+\mathrm{z})=\mathrm{xy}+\mathrm{xz}$

4. $1 \cdot x=x$

* $\omega+1=\omega^{2}$ holds for all $\mathrm{x}, \mathrm{y}, \mathrm{z}$
- $x^{3}=1$ for all nonzero elements

Galois Field

\diamond Galois Field: A field with finite element, finite field
\diamond For every power p^{n} of a prime, there is exactly one finite field with p^{n} elements (called GF(p^{n}), and these are the only finite fields.
\diamond For $\mathrm{n}>1$, \{integers $\left.\left(\bmod \mathrm{p}^{\mathrm{n}}\right)\right\}$ do not form a field.

* Ex. $\mathrm{p} \cdot \mathrm{x} \equiv 1\left(\bmod \mathrm{p}^{\mathrm{n}}\right)$ does not have a solution
(i.e. p does not have multiplicative inverse)

How to construct a GF($\left.\mathrm{p}^{\mathrm{n}}\right)$?

\diamond Def: $\mathrm{Z}_{2}[\mathrm{X}]$: the set of polynomials whose coefficients are integers $\bmod 2$

* ex. $0,1,1+X^{3}+X^{6} \ldots$
* add/subtract/multiply/divide/Euclidean Algorithm: process all coefficients mod 2

$$
\begin{array}{ll}
\text { \& }\left(1+X^{2}+X^{4}\right)+\left(X+X^{2}\right)=1+X+X^{4} & \text { bitwise } X O R \\
\left(1+X+X^{3}\right)(1+X)=1+X^{2}+X^{3}+X^{4} & \\
\text { \& } X^{4}+X^{3}+1=\left(X^{2}+1\right)\left(X^{2}+X+1\right)+X \quad \text { long division } \\
\text { can be written as } \\
X^{4}+X^{3}+1=X\left(\bmod X^{2}+X+1\right) &
\end{array}
$$

How to construct GF($\left.2^{\mathrm{n}}\right)$?

$\stackrel{\text { Define }}{ } \mathrm{Z}_{2}[\mathrm{X}]\left(\bmod \mathrm{X}^{2}+\mathrm{X}+1\right)$ to be $\{0,1, \mathrm{X}, \mathrm{X}+1\}$

* addition, subtraction, multiplication are done $\bmod \mathrm{X}^{2}+\mathrm{X}+1$
* $f(X) \equiv g(X)\left(\bmod X^{2}+X+1\right)$
\# if $f(X)$ and $g(X)$ have the same remainder when divided by $X^{2}+X+1$
* or equivalently $\exists \mathrm{h}(\mathrm{X})$ such that $\mathrm{f}(\mathrm{X})-\mathrm{g}(\mathrm{X})=\left(\mathrm{X}^{2}+\mathrm{X}+1\right) \mathrm{h}(\mathrm{X})$
\# ex. $X \cdot X=X^{2} \equiv X+1\left(\bmod X^{2}+X+1\right)$
* if we replace X by ω, we can get the same $\mathrm{GF}(4)$ as before
* the modulus polynomial $\mathrm{X}^{2}+\mathrm{X}+1$ should be irreducible

Irreducible: polynomial does not factor into polynomials of lower degree with mod 2 arithmetic ex. $X^{2}+1$ is not irreducible since $X^{2}+1=(X+1)(X+1)$

How to construct GF($\left.\mathrm{p}^{\mathrm{n}}\right)$?

$\diamond \mathrm{Z}_{\mathrm{p}}[\mathrm{X}]$ is the set of polynomials with coefficients mod p
\leftrightarrow Choose $\mathrm{P}(\mathrm{X})$ to be any one irreducible polynomial mod p of degree n (other irreducible $\mathrm{P}(\mathrm{X})$'s would result to isomorphisms)
$\stackrel{L e t}{\mathrm{GF}}\left(\mathrm{p}^{\mathrm{n}}\right)$ be $\mathrm{Z}_{\mathrm{p}}[\mathrm{X}] \bmod \mathrm{P}(\mathrm{X})$
\triangleleft An element in $Z_{p}[X] \bmod P(X)$ must be of the form

$$
a_{0}+a_{1} X+\ldots+a_{n-1} X^{n-1}
$$

each a_{i} are integers mod p, and have p choices, hence there are p^{n} possible elements in $\mathrm{GF}\left(\mathrm{p}^{\mathrm{n}}\right)$
\diamond multiplicative inverse of any element in $\mathrm{GF}\left(\mathrm{p}^{\mathrm{n}}\right)$ can be found using extended Euclidean algorithm(over polynomial)

$\mathrm{GF}\left(2^{8}\right)$

\& AES (Rijndael) uses GF(2^{8}) with irreducible polynomial $\mathrm{X}^{8}+\mathrm{X}^{4}+\mathrm{X}^{3}+\mathrm{X}+1$
\diamond each element is represented as

$$
b_{7} X^{7}+b_{6} X^{6}+b_{5} X^{5}+b_{4} X^{4}+b_{3} X^{3}+b_{2} X^{2}+b_{1} X+b_{0}
$$

each b_{i} is either 0 or 1
\diamond elements of $\mathrm{GF}\left(2^{8}\right)$ can be represented as 8 -bit bytes $\mathrm{b}_{7} \mathrm{~b}_{6} \mathrm{~b}_{5} \mathrm{~b}_{4} \mathrm{~b}_{3} \mathrm{~b}_{2} \mathrm{~b}_{1} \mathrm{~b}_{0}$
$\& \bmod 2$ operations can be implemented by XOR in H/W

$\mathrm{GF}\left(\mathrm{p}^{\mathrm{n}}\right)$

\diamond Definition of generating polynomial $g(X)$ is parallel to the generator in Z_{p} :

* every element in GF(pr) (except 0) can be expressed as a power of $g(X)$
* the smallest exponent k such that $\mathrm{g}(\mathrm{X})^{\mathrm{k}}=1$ is $\mathrm{p}^{\mathrm{n}}-1$
\triangleleft Discrete \log problem in GF($\left.\mathrm{p}^{\mathrm{n}}\right)$:
* given $\mathrm{h}(\mathrm{X})$, find an integer k such that

$$
h(X) \equiv g(X)^{k}(\bmod P(X))
$$

* believed to be very hard in most situations

