1071 Cryptography Homework \#2 Due 10/30

1. Let a and $n>1$ be integers with $\operatorname{gcd}(a, n)=1$. The order of $a(\bmod n), \operatorname{or} d_{n}(a)$, is the smallest positive integer r such that $a^{r} \equiv 1(\bmod n)$.
(a) Show that $r \leq \phi(n)$.
(b) Show that if $m=r k$ is a multiple of r, then $a^{m} \equiv 1(\bmod n)$.
(c) If $a^{t} \equiv 1(\bmod n)$, where $t=q r+s$ with $0 \leq s<r$, show that $a^{s} \equiv 1(\bmod n)$. Also, show that the definition of r implies that $s=0$ and thus $r \mid t$.
(d) Show that $\operatorname{ord}_{n}(a) \mid \phi(n)$.
(e) Show that any prime order group \mathbf{G} (not necessarily a group of integers) is indeed cyclic.
2. (a) Show that if $\operatorname{gcd}(\mathrm{e}, 24)=1$, then $e^{2} \equiv 1(\bmod 24)$.
(b) Show that if $\mathrm{n}=35$ is used as an RSA modulus, then the encryption exponent e always equals the decryption exponent d.
3. Suppose that there are two users in a network. Let their RSA moduli be n_{1} and n_{2}, with n_{1} not equal to n_{2}. If you are told that n_{1} and n_{2} are not relatively prime, how would you break their schemes? (In Asiacrypt 2013, the paper "Factoring RSA keys from certified smart cards: Coppersmith in the wild" showed that there is a devastated security loophole in Taiwan's "Citizen Digital Certificate".)
4. Show that the quotients in the Euclidean algorithm for $\operatorname{gcd}(a, b)$ are exactly the numbers a_{0}, a_{1}, \ldots that appear in the continued fraction of $\frac{a}{b}$.
5. In order to increase security, Bob chooses n and two encryption exponents e_{1}, e_{2}. He asks Alice to encrypt her message m to him by first computing $c_{1}=m^{e_{1}}(\bmod n)$, then encrypting c_{1} to get $c_{2}=c_{1}{ }^{e_{2}}(\bmod n)$. Alice then sends c_{2} to Bob. Does this double encryption increase security over single encryption? Why or why not?
