1071 Cryptography Homework #2 Due 10/30

- 1. Let a and n > 1 be integers with gcd(a, n) = 1. The **order** of a (mod n), $ord_n(a)$, is the smallest positive integer r such that $a^r \equiv 1 \pmod{n}$.
 - (a) Show that $r \leq \phi(n)$.
 - (b) Show that if m = rk is a multiple of r, then $a^m \equiv 1 \pmod{n}$.
 - (c) If $a^t \equiv 1 \pmod{n}$, where t = qr + s with $0 \le s < r$, show that $a^s \equiv 1 \pmod{n}$. Also, show that the definition of r implies that s = 0 and thus r|t.
 - (d) Show that $ord_n(a)|\phi(n)$.
 - (e) Show that any prime order group \mathbf{G} (not necessarily a group of integers) is indeed cyclic.
- 2. (a) Show that if gcd(e, 24) = 1, then $e^2 \equiv 1 \pmod{24}$.
 - (b) Show that if n = 35 is used as an RSA modulus, then the encryption exponent e always equals the decryption exponent d.
- 3. Suppose that there are two users in a network. Let their RSA moduli be n_1 and n_2 , with n_1 not equal to n_2 . If you are told that n_1 and n_2 are not relatively prime, how would you break their schemes? (In Asiacrypt 2013, the paper "Factoring RSA keys from certified smart cards: Coppersmith in the wild" showed that there is a devastated security loophole in Taiwan's "Citizen Digital Certificate".)
- 4. Show that the quotients in the Euclidean algorithm for gcd(a, b) are exactly the numbers a_0, a_1, \ldots that appear in the continued fraction of $\frac{a}{b}$.
- 5. In order to increase security, Bob chooses n and two encryption exponents e_1, e_2 . He asks Alice to encrypt her message m to him by first computing $c_1 = m^{e_1} \pmod{n}$, then encrypting c_1 to get $c_2 = c_1^{e_2} \pmod{n}$. Alice then sends c_2 to Bob. Does this double encryption increase security over single encryption? Why or why not?